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Programmable spin-state switching in a
mixed-valence spin-crossover iron grid
Takuto Matsumoto1, Graham N. Newton1, Takuya Shiga1, Shinya Hayami2, Yuta Matsui3, Hiroshi Okamoto3,

Reiji Kumai4, Youichi Murakami4 & Hiroki Oshio1

Photo-switchable systems, such as discrete spin-crossover complexes and bulk iron–cobalt

Prussian blue analogues, exhibit, at a given temperature, a bistability between low- and

high-spin states, allowing the storage of binary data. Grouping different bistable

chromophores in a molecular framework was postulated to generate a complex that could be

site-selectively excited to access multiple electronic states under identical conditions. Here

we report the synthesis and the thermal and light-induced phase transitions of a tetranuclear

iron(II) grid-like complex and its two-electron oxidized equivalent. The heterovalent grid is

thermally inactive but the spin states of its constituent metal ions are selectively switched

using different laser stimuli, allowing the molecule to exist in three discrete phases.

Site-selective photo-excitation, herein enabling one molecule to process ternary data,

may have major ramifications in the development of future molecular memory storage

technologies.
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B
istable materials, which have two thermodynamically stable
phases at a given temperature, have switchable electronic
states that can be manipulated through the application of

external stimuli and may have major applications in future
technologies as quantum logic operators or components in
memory storage devices1–3. The (SCO) phenomenon, by which
transition metal ions can exhibit magnetic bistability, has been
reported in a wide range of systems, from mononuclear
complexes to infinite coordination polymers4,5. Complexes of
transition metal ions with d4 to d7 electronic configurations may
show reversible SCO between their high-spin (HS) and low-spin
(LS) states when stimulated by temperature, light, pressure or
guest absorption/desorption6,7. Their simple synthesis and
functionality have made them excellent candidates as molecular
switches or sensors8. Iron(II) complexes are the most commonly
reported thermal SCO materials9, but there are various examples
based on other metal ions10–14.

Iron(II) complexes also exhibit a light-induced LS-HS state
transition (LIESST: light-induced exited spin-state trapping)15,
but usually only at low temperatures. The meta-stable HS state is
generated by excitation of the d–d or metal-to-ligand charge
transfer (MLCT) absorption band, changing the spin state of the
iron(II) ion from SLS¼ 0 to SHS¼ 2. The associated elongation
(B0.2 Å) of the coordination bond lengths energetically
disfavours thermal relaxation back to the LS state at low
temperature, allowing the light-induced meta-stable state to be
trapped16,17. LIESST has also been seen in iron(III) SCO
complexes, usually through excitation of the ligand-to-metal
charge transfer (LMCT) band, but the shorter associated average
(LS to HS) bond elongation (B0.1 Å) can make the meta-stable
HS state more difficult to trap18.

Systems incorporating multiple bistable building units may
display more than two stable phases when stimulated by heat
or light, and have the potential to act as multi-responsive,
multi-faceted19 or selective switches in nano-scale devices20.
Approaches to the generation of multi-bistable systems include
the crystallization of mononuclear SCO complexes in asymmetric
packing environments21, the co-crystallization of different
bistable molecules22 and the linkage of two or more bistable
building blocks in a molecular system, in which the stabilization
of an intermediate state depends on the degree to which
neighbouring chromophores are electronically coupled23.
Cooperative SCO behaviour, mediated by the steric and
electronic stress applied to neighbouring metal centres by
multidentate or bridging ligands, has been reported in
dinuclear complexes23, tetranuclear squares24,25 and grid-like
complexes26–28. Indeed, the study of grid-type clusters is of
particular interest, as their tunable electronic states29,30 have seen
them proposed as quantum cellular automata; molecular binary
logic devices that function through coulombic interactions
between metal centres on neighbouring cells31. Intramolecular
electronic cooperativity in {FeII

4} grids (consisting of four
equivalent chromophores) has been shown to lead to multi-step
thermal SCO, as geometric and electronic changes associated with
each spin transition have knock-on effects on the electronic states
of the neighbouring metal ions27. Step-wise thermal conversion
does not, however, guarantee that multiple discrete phases can be
accessed photochemically.

To address this, our strategy is to develop a molecule containing
different SCO-active chromophores, which will allow the cluster to
exist in three discrete light-accessible states at low temperatures,
that is, below B50 K (Fig. 1). Aromatic imidazolate ligands are
used to bridge FeII and FeIII SCO chromophores in a grid-type
architecture and, as anticipated, the heterovalent ions are selectively
excited by different laser stimuli, thus creating, to the best of our
knowledge, the first example of site-selective spin-state switching.

Results
Syntheses and structures. The bridging ligand 2-phenyl-4,5-
bis{6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrid-2-yl}-1H-imidazole (HL)
was synthesized from the condensation of 2,6-dibromopyridine
and 3,5-dimethyl-1H-pyrazole following a five-step pathway
(Fig. 2 and Methods). The reaction of Fe(BF4)2 � 6H2O and HL in
acetonitrile yielded a red solution, from which orange rhombic
crystals suitable for the single-crystal X-ray structural determi-
nation of [FeII

4(L)4](BF4)4 � 2CH3CN ([FeII
4]) were obtained by

diethyl ether diffusion (Fig. 3). Cyclic voltammetry measurements
of [FeII

4] were carried out in acetonitrile at 293 K (Fig. 4, inset),
and showed four quasi-reversible redox waves at E1/2¼ þ 0.52 V,
þ 0.61 V, þ 0.90 V and þ 1.00 V (versus saturated calomel
electrode (SCE)) corresponding to the one-electron oxidation of
the four iron centres. The comproportionation constant of the
two-electron oxidized complex {FeIII

2FeII
2}6þ was 9.8� 104

(ref. 32), suggesting that the mixed-valence species was relatively
stable in acetonitrile. [FeII

4] was, therefore, chemically oxidized
using excess AgBF4 in nitromethane to yield, after filtration
and slow diffusion of diethyl ether, dark red crystals of
[FeIII

2FeII
2(L)4](BF4)6 � 6CH3NO2 � (C2H5)2O � 4H2O ([FeIII

2FeII
2]).
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Figure 1 | Multi-bistability. Representative plot (a) and scheme (b) of the

adopted approach to the synthesis of selectively photo-excitable molecules,

in which different SCO-active chromophores are incorporated into the

same structure. HT, IM and LT are the high, intermediate and low

temperature (thermally accessible) phases, respectively, and PP1 and PP2

are the first and second photo-induced phases, respectively. The thermal

multi-bistability is represented by the blue trace, which undergoes two

hysteretic transitions, from HT to LT via an IM phase. The corresponding

photochemical phases, PP1 and PP2, accessed by irradiation at wavelengths

hn1 and hn2, are represented by green and red traces, respectively. The

scheme (b) illustrates the possible thermal (D) phase transitions and how

the chromophores are selectively excited by the different wavelengths of

light (hn1 and hn2).
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Figure 2 | Structure of ligand HL. The central imidazole moiety bridges

two discrete tridentate-binding sites.
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The crystallographically determined structures of [FeII
4] and

[FeIII
2FeII

2] are shown in Fig. 3. [FeII
4] crystallized in the P �1

space group and temperature-dependent structural data were
collected at 18, 100 and 190 K (in heating mode) and at 293 K.
[FeII

4] has a tetranuclear grid-like core, consisting of four
crystallographically independent iron ions and ligands. The
ligands adopt bis-tridentate coordination modes, bridging the
iron ions through their central imidazolate moieties, ensuring that
all four iron ions are coordinated by two tridentate-binding sites,
resulting in N6 coordination environments. Structural data
collected at both 18 K (Supplementary Fig. 1; Supplementary
Table 1) and 100 K (Supplementary Fig. 2; Supplementary
Table 2) allowed the characterization of the cluster in two
partially occupied, overlaid configurations (A and B), leading to
relatively low precision on the observed bond distances. Despite
this, the bond lengths and angular distortion parameters (S)
allowed us to suggest that Fe1A and Fe2A were HS and Fe3A and
Fe4A were LS ions, while Fe1B and Fe4B were HS and Fe2B
and Fe3B were in the LS state; a ratio confirmed by low
temperature magnetic susceptibility and Mössbauer data (Fig. 5,
Supplementary Fig. 3; Supplementary Table 3). In both

configurations, the grid had a cis-2HS-2LS configuration,
abbreviated as [(HS-FeII)2(LS-FeII)2], similar to that described
in the first crystallographically determined 2HS-2LS iron grid and
the subsequent theoretical studies thereupon33,34, although more
recently a trans-2HS-2LS grid has also been reported35.
Increasing the measurement temperature from 100 K to 190 K
caused the c axis to double in length, and the unit cell to contain
two crystallographically independent sites, both of which
were occupied by two overlaid cluster configurations (see
Supplementary Fig. 4; Supplementary Table 4)36–38. Once
again, the large number of atoms led to relatively low precision
on the bond distances. At site 1, in both configurations A and B,
the bond lengths and angles suggested that ion Fe3A/B was in the
LS state, while all other ions were in the HS state. At the second
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Figure 3 | Crystal structures of [FeII
4] and [FeIII

2FeII
2]. (a) [FeII

4] (position A) and (b) [FeIII
2FeII

2] at 100 K. HS-FeII centres are shown in green;

LS FeII, sky-blue; LS-FeIII, orange; C, grey and N, blue. For clarity, counteranions, hydrogen atoms and solvent molecules have been omitted.
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Figure 4 | Controlled potential absorption spectra of [FeII
4]. The

absorption spectra show three key processes on increasing the applied

potential from 0.5 to 1.2 V: a decrease in LS-FeII MLCT band (501 nm)

intensity, an increase in LS-FeIII LMCT band (864 nm) intensity, and the

appearance and subsequent disappearance of an IVCT band (42,000 nm).

Inset: CV data of [FeII
4].
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Figure 5 | Magnetic susceptibility measurements. The thermal and

light-induced magnetic susceptibility data collected for [FeII
4] (empty

markers; dark blue, heating mode; light blue, cooling mode; green, 532 nm

laser; red, 808 nm laser) and [FeIII
2FeII

2] (filled markers; blue, heating

mode; light blue, cooling mode; green, 532 nm laser; red, 532 then 808 nm

lasers). [FeIII
2FeII

2] showed very little thermal phase transition, but

irradiation with the different lasers had contrasting effects on the low

temperature wmT values.
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site, molecule C contained two LS ions at positions Fe2C
and Fe4C, while all ions in molecule D were in the HS state.
Overall, the intermediate (IM) phase can be represented by the
average formula [(HS-FeII)3(LS-FeII)], a ratio confirmed by
magnetic susceptibility and Mössbauer data (Fig. 5,
Supplementary Fig. 3; Supplementary Table 3). Increasing the
measurement temperature to 293 K completed the transition to
the [(HS-FeII)4] HT phase (HS-FeII-Nav¼ 2.17(1) Å).
Temperature-dependent crystallographic analysis showed that
[FeII

4] displayed two-step intramolecular SCO behaviour while
retaining single crystallinity, allowing us to follow the spin-state
changes on each metal site as a function of temperature.

[FeIII
2FeII

2] crystallized in the monoclinic space group C2/c at
100 K (Fig. 3). The oxidation and spin states of the iron ions
in [FeIII

2FeII
2] were confirmed by charge balance, magnetic

susceptibility measurements and Mössbauer spectra. The grid was
diagonally bisected by a C2 axis, resulting in three crystal-
lographically independent iron ions, suggesting that homovalent
ions were likely to be found on opposite corners. The Mössbauer
spectrum of [FeIII

2FeII
2] collected at 100 K confirmed that

LS-FeIII and LS-FeII ions existed in a 1/1 ratio in the grid, and
the observation of two LS-FeIII doublets and one LS-FeII doublet
suggested that the FeIII ions were located on the crystal-
lographically inequivalent Fe5 and Fe7 positions (see
Supplementary Fig. 5; Supplementary Table 5). The average
coordination bond lengths around the iron ions at 100 K were
Fe5¼ 1.948(3) Å, Fe6¼ 1.957(3) Å and Fe7¼ 1.940(3) Å, respec-
tively, suggesting that all iron ions were in the low-spin state at
100 K. Increasing the data collection temperature to 250 K caused
structural disorder around the Fe7 centre, indicative of incom-
plete single-site FeIII spin transition, an observation in line with
the Mössbauer spectra, in which a low-intensity HS-FeIII doublet
progressively appeared as temperature was increased (see
Supplementary Fig. 6 ; Supplementary Table 6).

Controlled potential absorption spectra. Full understanding of
the relevant electronic transition energies within the molecules
was key if selective LIESST was to be observed. The room tem-
perature solution-state absorption spectra of [FeII

4] and [FeIII
2-

FeII
2] were comparable with those obtained from powdered

samples at 100 K, suggesting that the complexes were in their LT
phases in solution (see Supplementary Figs 7 and 8). Controlled
potential Ultraviolet–visual measurements were conducted on a
solution of [FeII

4] in acetonitrile to track the absorption bands
associated with all accessible redox states (Fig. 4). Initial oxidation
from {FeII

4}4þ to {FeIII
2FeII

2}6þ caused the LS-FeII MLCT band
(lmax¼ 501 nm) to weaken, while new absorption bands
appeared at 864 nm and 2,462 nm. Full oxidation to a {FeIII

4}8þ

species caused the band at 2,462 nm to disappear, while that at
864 nm increased in intensity underwent a blue-shift, indicating
the absorption at 2,462 nm to be an intervalence charge transfer
(IVCT) band between heterovalent iron ions, and the band at
864 nm to be the LS-FeIII LMCT band39. Absorption spectra were
collected from single crystals of [FeII

4] to observe the low-energy
edge of the LS-FeII MLCT band at high resolution, and showed it
to extend to around 850 nm (see Supplementary Fig. 9). The
observation of the discrete MLCT (501 nm) and LMCT (864 nm)
bands in the spectra corresponding to the {FeIII

2FeII
2}6þ species

suggested that site-selective LIESST would be possible in
[FeIII

2FeII
2].

Temperature-dependent magnetic susceptibility. Magnetic
susceptibility measurements were carried out on [FeII

4] and
[FeIII

2FeII
2] in heating (m) and cooling (k) modes (Fig. 5). [FeII

4]
exhibited multi-step thermal SCO, in agreement with the

temperature-dependent structural data, from [(HS-FeII)4] at
room temperature, via a [(HS-FeII)3(LS-FeII)] intermediate pla-
teau, to [(HS-FeII)2(LS-FeII)2] at around 100 K.

For [FeIII
2FeII

2], the wmT value at 100 K was
0.942 e.m.u. mol� 1 K, closely matching the predicted value of
1.00 (g¼ 2.31) for two uncorrelated LS-FeIII ions (S¼ 1/2) and
two LS-FeII ions (S¼ 0). With heating, the wmT value increased
gradually, reaching 2.36 e.m.u. mol� 1 K at 300 K. Further heating
led to some sample degradation, so all measurements were carried
out below 300 K. The susceptibility data suggest that thermal SCO
occurred gradually above 200 K, in agreement with the structural
and Mössbauer analyses40. The decrease in wmT values at low
temperature indicates that antiferromagnetic interactions were
operative between the LS-FeIII ions, and fitting the data collected
in heating mode up to 100 K gave a J value of � 2.47(9) cm� 1

and a g value of 2.31; the small J value, which may include both
intra- and inter-molecular interactions, supports the assignment
of trivalent ions on opposite corners of the grid (Supplementary
Fig. 10). The LS-FeII ions in [FeIII

2FeII
2] show greater thermal

stability than those in [FeII
4], probably attributable to the more

pronounced distortion of the FeII coordination environments in
[FeII

4] (see Supplementary Table 7)41,42.

Selective photoswitching. The combination of heterovalent iron
chromophores within a SCO complex suggested that, for the first
time, site-specific LIESST would be accessible. To investigate the
wavelength-dependent photo-response of [FeII

4] and [FeIII
2FeII

2],
irradiation experiments were conducted inside the SQUID
magnetometer. For the LIESST phenomenon to be observed,
specific electronic absorption bands should be excited; usually
d–d or MLCT for FeII and LMCT for FeIII. Ultraviolet–visible–
near infrared measurements showed [FeII

4] to have a broad
MLCT band centred at lmax¼ 501 nm and spreading to ca.
850 nm, while [FeIII

2FeII
2] had a separate LMCT band at 864 nm

originating from its LS-FeIII moieties (see Supplementary
Figs 7–9). These observations formed the basis for our site-
selective LIESST excitation experiments.

Irradiation of a microcrystalline sample of [FeII
4] at 532 nm

(10 mW cm� 2) at 5 K caused the initial wmT value to decrease
(Fig. 5). As the sample was heated to 56 K, the wmT value
increased rapidly to a maximum of 9.87 e.m.u. mol� 1 K, indicat-
ing the occurrence of the LIESST effect due to excitation of the
LS-FeII MLCT band. The photo-induced state then thermally
relaxed to the initial phase on further temperature increase. When
808 nm laser irradiation (10 mW cm� 2) was used, very similar
behaviour was observed, with a wmT maximum of
9.54 e.m.u. mol� 1 K at 56 K. This behaviour is attributable to
the excitation of the low-energy tail of the broad LS-FeII MLCT
band discussed above.

For [FeIII
2FeII

2], a green light-induced excited state was
accessed by irradiation with a 532 nm laser (10 mW cm� 2) at
5 K, which led to an increase in the wmT values, reaching a
saturation value of 1.24 e.m.u. mol� 1 K after 4 h (see
Supplementary Fig. 11). When the sample was then irradiated
with red light (10 mW cm� 2) at 5 K, the wmT value increased to a
second saturation level of 1.46 e.m.u. mol� 1 K indicative of a
second greenþ red light-induced excited state (gþ rES).
Subsequent temperature increases were mirrored by rises in the
wmT values of both the green light-induced excited state and
gþ rES, indicative of antiferromagnetic coupling, reaching
maxima at 22 K of 1.40 and 1.99 e.m.u. mol� 1 K, respectively,
before thermally relaxing to the LS phase. Both species had
entirely reverted to the ground state by 100 K. When [FeIII

2FeII
2]

was excited by only red light, the susceptibility reached saturation
at 1.45 e.m.u. mol� 1 K after 6 h; very close to the value obtained
for the gþ rES. It should be noted that the relatively low wmT
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values reached on irradiation are likely to be due in part to the
existence of strong intramolecular antiferromagnetic coupling,
originating from the charge transfer interactions, between the
heterovalent metal centres. [FeIII

2FeII
2] can be considered a

thermally inactive photo-switchable material, an unusual
observation in SCO materials research43.

Due to the low relaxation temperature and the existence of the
intramolecular antiferromagnetic interactions at low temperature,
the spin states of the excited species could not be elucidated by
susceptibility data alone. Light irradiation experiments were
carried out on single crystals of [FeII

4] and [FeIII
2FeII

2].
Irradiation at 532 and 808 nm to a single crystal of [FeII

4] caused
the bond distances to increase to lengths similar to those seen at
293 K, characteristic of full [(HS-FeII)2(LS-FeII)2]-[(HS-FeII)4]
transition (see Supplementary Table 8). No structural change was
observed, however, on radiation of [FeIII

2FeII
2] crystals, probably

as a result of their dark colour and impenetrability to light.
To investigate the electronic characteristics of the light-induced

excited states with maximum sensitivity, 57Fe (95.5%)-enriched
samples of [FeII

4] and [FeIII
2FeII

2] were prepared. Mössbauer
measurements conducted at 5 K on [FeII

4] (LS-FeII/HS-FeII¼ 1/1)
indicated that irradiation at 532 nm and 808 nm resulted
in similar LS-FeII/HS-FeII ratios of 0.18/0.82 and 0.17/0.83,
respectively (see Supplementary Fig. 12; Supplementary Table 9).
It should be noted that the deviation of these values from a 0/1
ratio might be due to the difficulties associated with ensuring
complete sample exposure inside the Mössbauer spectrometer.

The Mössbauer spectrum of [FeIII
2FeII

2] collected in the
absence of light at 5 K showed two doublet peaks corresponding
to LS-FeII and LS-FeIII species, with a peak-intensity ratio of

LS-FeIII/LS-FeII¼ 0.45/0.55 (Fig. 6; Supplementary Table 10).
After 532 nm laser irradiation at 5 K, however, the LS-FeII

absorption decreased, and a new doublet appeared corresponding
to HS-FeII. The peak-intensity ratio of LS-FeIII/HS-FeIII/LS-FeII/
HS-FeII¼ 0.42/0.00/0.31/0.27 confirmed that FeII-specific LIESST
had occurred after exposure to green light. The sample was then
irradiated with 808 nm laser light at 5 K causing the intensity of
the LS-FeIII doublet peak to decrease, and a new doublet
peak to emerge with a small quadrupole-splitting parameter
corresponding to HS-FeIII. The peak-intensity ratio of LS-FeIII/
HS-FeIII/LS-FeII/HS-FeII¼ 0.32/0.13/0.30/0.25, confirmed that
red light stimulated LIESST of the FeIII ions. The Mössbauer
data indicated that 532 and 808 nm lasers selectively induced
LS-FeII to HS-FeII and LS-FeIII to HS-FeIII conversions,
respectively, allowing a remarkable tetranuclear cluster to be
generated in which iron ions are present in four different
electronic states. It should be noted that when the sample was
irradiated with only red laser light, the same result was obtained
as when greenþ red lasers were used; this is explained by the
overlapping absorption bands of the LS-FeIII LMCT and LS-FeII

MLCT transitions.

Discussion
Homovalent ([FeII

4]) and heterovalent ([FeIII
2FeII

2]) grids were
synthesized and found to display LIESST at low temperatures.
Although [FeII

4] showed hysteretic multi-step thermal SCO
behaviour, [FeIII

2FeII
2] showed little thermal SCO up to 300 K.

Irradiation of [FeIII
2FeII

2] at low temperatures with green and red
lasers led to FeII- and FeIII-specific LIESST phenomena,
respectively; this being the first observation of site-selective
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spin-state switching. The phenomenon of site-selective spin-state
transition allows the electronic state of a molecule to be
photochemically programmed between multiple levels. Molecules
displaying such extraordinary multistability have great potential
in future technologies as nano-scale logic devices, and the
extension of such clusters into patterned arrays raises the
possibility of light-programmable molecular memory with vast
data storage density.

Methods
X-ray crystallography. A single crystal was removed from the mother liquor,
mounted on a glass rod and intensity data were collected at 293 K, 190 K, 100 K,
18 K (dark, after irradiation 532 nm, and 808 nm laser) for the divalent species, and
at 250 K, and 100 K for the mixed-valence compound, using a Bruker SMART
APEX II CCD system with Mo-Ka radiation (l¼ 0.71073 Å, 50 kV, 24 mA). See
Supplementary Table 11 for all parameters. The structures were solved by direct
methods and refined by full-matrix least-square techniques on F2 using SHELXTL.
All data sets were treated with the SQUEEZE program from the PLATON suite to
remove highly disordered solvent molecules from the calculations. In all [FeII

4]
structures, electron density accounting for two acetonitrile molecules per formula
unit was removed, while electron densities equivalent to two nitromethane and
four water molecules, and four water molecules, were removed from the data sets
of [FeIII

2FeII
2] at 250 K and 100 K, respectively. See Supplementary Note 1;

Supplementary Data 1.

Magnetic measurements. Susceptibility data were collected under an applied
magnetic field of 500 Oe using a Quantum Design MPMS-5S SQUID magnet-
ometer. The temperature dependence was measured at 3.0 K increments in settle
mode. The scan rate of the temperature was fixed to 10.0 K min� 1 above 10 K, and
at 2.0 K min� 1 below 10 K, and each measurement was performed 30 s after the
temperature had stabilized. Magnetic data were corrected for the diamagnetism of
the sample holder and of the sample using Pascal’s constants. In the light
irradiation experiments, a small amount of sample was used to maximize the light
conversion ratio. The sample was irradiated at 5 K by a DPSS laser (532 nm with
10 mW cm� 2, Opto Tech 532.200.KE.01 and 808 nm with 10 mW cm� 2, Intelite
I808-120G-CAP) through an optical fibre (Newport F-MBD; 3 m length, 1.0 mm
core size, 1.4 mm diameter). During irradiation, the magnetic moment was
recorded at regular time intervals until saturation, after which point the light
irradiation was stopped. The temperature dependence of magnetic susceptibility
after light irradiation was measured using an applied magnetic field of 500 Oe and a
scan rate of 0.1 K min� 1 in sweep mode.

Mössbauer spectra. Mössbauer experiments were carried out using a 57Co/Rh
source in a constant-acceleration transmission spectrometer (Topologic Systems)
equipped with an Iwatani HE05/CW404 cryostat. The spectrometer was calibrated
using standard a-Fe foil. All samples for Mössbauer experiments were obtained
using 57Fe-enriched starting materials (95.5%). In the light irradiation experiments,
the sample was irradiated at 5 K by a DPSS laser.

Single-crystal absorption spectroscopy. A specially designed spectrometer with
a 25-cm-grating monochromator (JASCO M25-GT) and an optical microscope was
used. A 150-W tungsten–halogen lamp and a 250-W xenon lamp were employed
as the light sources, and Si and Ge photodiodes were used with a photomultiplier
as the detectors. The light sources and detectors were selected depending on the
measured energy range. Samples were cooled in a conduction-type cryostat.

Cyclic voltammetry. Cyclic voltammetry measurements were carried out in a
standard one-compartment cell under a nitrogen atmosphere at 20 �C equipped with
a platinum wire counter electrode, an SCE reference electrode, and a glassy carbon
working electrode using a BAS 620A electrochemical analyzer. The measurements
were performed in acetonitrile with 0.1 M tetra-n-butylammonium hexaflouropho-
sphate (n-Bu4NPF6) as the supporting electrolyte at a scan rate of 50 mV s� 1.

Ultraviolet–visible–near infrared spectroscopy. Ultraviolet–visible–near
infrared absorption spectra were recorded on Shimadzu UV-3150 spectrometer.
The variable temperature dependence of ultraviolet–visible–near infrared spectra
was measured on KBr pellet samples using the Shimadzu UV-3150 spectrometer
equipped with a Unisoku USP-203-A cryostat.

Controlled potential spectroscopy. Controlled potential spectroscopy experi-
ments were done in a 0.5-mm path length quartz cell under a nitrogen atmosphere.
A BAS 620A electrochemical analyzer was used as a potentiostat. Electrochemical
experiments were performed in a three-electrode cell containing a platinum-mesh
working electrode, a platinum wire counter electrode and the SCE reference
electrode. Controlled potential spectra were recorded with a Shimadzu UV-3150

spectrometer. The measurements were performed in acetonitrile with 0.1 M
tetra-n-butylammonium hexaflourophosphate as the supporting electrolyte.

NMR measurements. 1H NMR and 13C NMR spectra were measured on a Bruker
AVANCE400 spectrometer at room temperature. Chemical shifts in the NMR were
reported in ppm (d), relative to the internal standard of tetramethylsilane. The
signals observed were described as s (singlet), d (doublet), t (triplet), m (multiplets).
The number of protons (n) for a given resonance is indicated as nH. Coupling
constants are reported as J in Hz.

Elemental analysis. Elemental analyses were performed using a Perkin Elmer
2400 element analyzer.

General synthesis. All reagents were obtained from commercial suppliers and
were used without further purification except when noted, or additionally distilled
(diglyme (bis(2-methoxyethyl)ether) over calcium hydride and diethyl ether over
sodium/benzophenone) as required. For a scheme of the synthesis of HL see
Supplementary Fig. 13.

Preparation of 2-bromo-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine (1).
A solution of 3,5-dimethyl-1H-pyrazol (8.00 g, 83.2 mmol) in anhydrous diglyme
(200 cm3) was stirred at 70 �C with sodium (1.80 g, 79.0 mmol) until the metal
dissolved. To this solution was added 2,6-dibromopyridine (20.0 g, 84.4 mmol) in
one portion. The resulting mixture was stirred at 60 �C for 42 h. The solvent was
removed in vacuo, and water (200 cm3) was added. A crude white precipitate was
collected by filtration and dried. The solid was purified by column chromatography
on silica gel (eluting with dichloromethane) to give 1 (12.2 g, 48.3 mmol, 61% yield)
as a crystalline white solid44: 1H NMR (CDCl3) d 7.84 (d, 1H, J¼ 8.0 Hz), 7.60 (dd,
1H, J¼ 7.8 Hz), 7.29 (d, 1H, J¼ 7.2 Hz), 5.99 (s, 1H), 2.65 (s, 3H), 2.28 (s, 3H). Anal.
(calc.) for C10H10N3Br (1): C, 47.81 (47.64); H, 4.07 (4.00); N, 16.69 (16.67)%.

Preparation of 6-(3,5-dimethyl-1H-pyrazol-1-yl)-2-pyridinecarboxylaldehyde
(2). 1 (10.1 g, 40.0 mmol) was dissolved in anhydrous diethyl ether (150 cm3)
under a nitrogen atmosphere. The solvent was cooled down to � 78 �C and n-
buthyl lithium (2.6 M in hexane) (15.4 cm3, 40.0 mmol) was added slowly, keeping
the temperature under � 60 �C. After stirring for 1 h at � 78 �C, anhydrous N,N-
dimethylformamide (6.74 cm3, 87.1 mmol) was added, ensuring that the reaction
temperature did not exceed � 70 �C. The mixture was stirred for one further hour
at � 78 �C, before the reaction was quenched by the addition of 6 M hydrochloric
acid. (15 cm3). The organic phase was collected and dried over anhydrous mag-
nesium sulphate. After evaporating the solvent, the residue was purified by column
chromatography on a silica gel (eluting with dichloromethane/ethyl acetate¼ 20:1)
to give 2 (4.94 g, 24.5 mmol, 61% yield) as a crystalline white solid45: 1H NMR
(CDCl3) d 10.02 (s, 1H), 8.16 (d, 1H, J¼ 8.4 Hz), 7.95 (dd, 1H, J¼ 7.6 Hz), 7.80 (d,
1H, J¼ 7.2 Hz), 6.05 (s, 1H), 2.75 (s, 3H), 2.31 (s, 3H). Anal. (calc.) for C11H11N3O
(2): C, 65.43 (65.66); H, 5.61 (5.51); N, 20.56 (20.88)%.

Preparation of 1,2-bis[6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrid-2-yl]-2-hydroxy-
ethanone (3). 2 (4.94 g, 24.5 mmol) was dissolved in ethanol (100 cm3) and an
aqueous solution (10 cm3) of potassium cyanide (325 mg, 5.00 mmol) was added
while the mixture was stirred. A yellow precipitate was collected by filtration and
washed with a small amount of water and ethanol to give, after drying, the
crystalline solid 3 (4.42 g, 11.3 mmol, 92% yield): 1H NMR (CDCl3) d 12.01 (s, 2H),
7.95 (dd, 2H, J¼ 8.0 Hz), 7.81 (d, 2H, J¼ 7.8 Hz), 7.66 (d, 2H, J¼ 8.0 Hz), 6.07
(s, 2H), 2.59 (s, 6H), 2.32 (s, 6H). 13C NMR (100 MHz, CDCl3) 154.09, 150.58,
149.94, 140.53, 139.77, 135.26, 117.42, 115.73, 109.27, 13.59, 13.53. Anal. (calc.)
for C22H22N6O2 (3): C, 65.53 (65.66); H, 5.60 (5.51); N, 20.73 (20.88)%. ESI–MS
m/z (obs./calc.)¼ 403.3/403.2 for [3þH]þ (C22H23N6O2).

Preparation of bis-[6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrid-2-yl]glyoxal (4).
3 (4.42 g, 11.3 mmol) was dissolved in concentrated nitric acid (10 cm3). After the
evolution of nitrogen dioxide gas had subsided, the solution was neutralized with a
saturated aqueous solution of potassium hydroxide. A precipitate was collected by
filtration and purified by column chromatography on silica gel (eluting with
dichloromethane/ethyl acetate¼ 20:1) to give 4 (2.68 g, 6.69 mmol, 59% yield) as a
pale yellow green solid: 1H NMR (CDCl3) d 8.20-8.18 (m, 2H), 8.00-7.99 (m, 4H),
5.86 (s, 2H), 2.22 (s, 6H), 2.11 (s, 6H). 13C NMR (100 MHz, CDCl3) 196.46, 153.09,
150.68, 149.35, 141.92, 139.42, 119.83, 118.32, 109.94, 14.37, 13.56. Anal. (calc.) for
C22H20N6O2 (4): C, 66.04 (65.99); H, 5.12 (5.03); N, 20.98 (20.99)%. ESI–MS m/z
(obs./calc.)¼ 401.3 / 401.2 for [4þH]þ (C22H21N6O2).

Preparation of 2-phenyl-4,5-bis[6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrid-2-yl]-
1H-imidazole (HL). 4 (2.68 g, 6.69 mmol), benzaldehyde (743 mg, 7.00 mmol) and
ammonium acetate (1.85 g, 24.0 mmol) were dissolved in acetic acid (80 cm3) and
refluxed for sixteen hours before cold water was added and the mixture was
neutralized by addition of saturated sodium hydroxide solution. The resulting
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precipitate was extracted into dichloromethane, and the organic phase was dried
over anhydrous magnesium sulphate. The solvent was removed in vacuo, and the
residue was purified by alumina column chromatography (activity stage I, eluting
with dichloromethane then methanol) to give HL (1.65 g, 3.38 mmol, 51% yield) as
a white solid: 1H NMR (CDCl3) d 11.16 (s, 1H), 8.20 (d, 1H, J¼ 7.6 Hz), 8.03 (d,
2H, J¼ 7.2 Hz), 7.00 (d, 1H, J¼ 7.6 Hz), 7.91 (dd, 1H, J¼ 8.0 Hz), 7.78 (d, 1H,
J¼ 8.0 Hz), 7.61 (dd, 1H, J¼ 7.6 Hz), 7.50 (d, 1H, J¼ 7.6 Hz), 7.49 (dd, 2H,
J¼ 7.4 Hz), 7.42 (dd, 1H, J¼ 7.4 Hz), 6.06 (s, 1H), 5.93 (s, 1H), 2.66 (s, 3H), 2.32,
(s, 6H), 2.28 (s, 3H). 13C NMR (100 MHz, CDCl3) 152.29, 151.87, 149.87, 149.70,
147.17, 146.37, 141.35, 140.69, 139.71, 139.01, 138.48, 129.73, 129.43, 129.15,
128.92, 125.67, 120.30, 120.23, 114.52, 114.25, 109.03, 108.80, 14.32, 13.91, 13.63,
13.62. Anal. (calc.) for C29H26N8 (HL): C, 71.31 (71.59); H, 5.60 (5.39); N, 22.59
(23.03)%. ESI–MS m/z (obs./calc.)¼ 487.2/487.2 for [HLþH]þ (C29H27N8).

Preparation of [FeII
4(L)4] complex. HL (97.3 mg, 0.20 mmol) in acetonitrile

(5.0 cm3) was added to Fe(BF4)2 � 6H2O (67.5 mg, 0.20 mmol) in acetonitrile
(5.0 cm3). Diethyl ether was allowed to diffuse into the solution, resulting in the
formation of orange blocks and yellow needle crystals. The crystals were then
washed with methanol, and the yellow crystals removed. The orange crystals of
[FeII

4](BF4)4 � 2CH3CN were collected by filtration (31.5 mg, 0.013 mmol, 25%
yield). Anal. (calc.) for C116H100N32B4F16Fe4 ([FeII

4] (BF4)4): C, 55.32 (55.44);
H, 4.31 (4.01); N, 17.70 (17.84)%. ESI–MS m/z (obs./calc.)¼ 541.5/541.4 for
[M–4(BF4)]4þ (C116H100N32Fe4). The 57Fe-enriched samples for Mössbauer
spectra measurements ware prepared using metallic 57Fe foils (95.5%).

Preparation of [FeIII
2FeII

2(L)4] complex. Excess AgBF4 (12.0 mg, 0.062 mmol)
was added to a nitromethane (5.0 cm3) solution of [FeII

4] (31.5 mg, 0.013 mmol).
The mixture was stirred for 15 min at 50 �C, cooled to room temperature, and the
precipitate (silver) removed by filtration. Diethyl ether was allowed to diffuse
into the filtrate, resulting in the formation of dark red rhombic crystals of
[FeIII

2FeII
2](BF4)6 � 6CH3NO2 � (C2H5)2O � 4H2O, which were collected by filtration

(28.1 mg, 0.009 mmol, 74% yield). Anal. (calc.) for C123H127N35B6F24Fe4O11

([FeIII
2FeII

2](BF4)6 � 3CH3NO2 � (C2H5)2O � 4H2O): C, 49.25 (48.99); H, 4.18 (4.24);
N, 15.97 (16.26)%.

Details of magnetic measurements on [FeII
4]. The wmT value of [FeII

4] at 100 K
(m) was 6.89 e.m.u. mol� 1 K, close to the spin-only value of 6.63 e.m.u. mol� 1 K
(g¼ 2.10), calculated from the sum of the uncorrelated spins of two HS-FeII (S¼ 2)
and two LS-FeII (S¼ 0) ions, as predicted by the structural and Mössbauer data. As
the sample was heated, the wmT value rapidly increased. At 190 K (m), the wmT plot
showed a small step with a value of 10.57 e.m.u. mol� 1 K, closely corresponding to
the spin-only value of 9.95 e.m.u. mol� 1 K expected for an average of three HS-FeII

ions and one diamagnetic LS-FeII centres per molecule. On further heating to
300 K, the magnetic susceptibility reached a plateau with a wmT value of
13.26 e.m.u. mol� 1 K, suggesting that all iron ions were in their HS states above
250 K. Subsequent measurements in cooling mode echoed the two-step heating
profile, but with a relatively wide thermal hysteresis. Mössbauer measurements
(Supplementary Fig. 3) and structural analyses confirmed that the decrease in wmT
values below 100 K was not due to SCO behaviour, but more likely a consequence
of the antiferromagnetic interactions between the HS iron ions. The thermal
hysteresis and multi-step phase transition mean that [FeII

4] is a thermally multi-
bistable molecule with the spin-state conversions of [(LS-FeII)2(HS-FeII)2]$
[(LS-FeII)(HS-FeII)3]$[(HS-FeII)4].
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measured the light irradiation 57Fe Mössbauer spectra. Y.M. and H.O. contributed to the
single-crystal absorption spectroscopy. R.K. and Y.M. performed the synchrotron X-ray
data collections.

Additional information
Accession codes The X-ray crystallographic coordinates for structures reported in this
Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC),
under deposition numbers CCDC 980494-980501. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.

Supplementary Information accompanies this paper at http://www.nature.com/nature
communications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Matsumoto, T. et al. Programmable spin-state switching in a
mixed-valence spin-crossover iron grid. Nat. Commun. 5:3865 doi: 10.1038/ncomms4865
(2014).

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. The images or other

third party material in this article are included in the article’s Creative Commons license,
unless indicated otherwise in the credit line; if the material is not included under the
Creative Commons license, users will need to obtain permission from the license holder
to reproduce the material. To view a copy of this license, visit http://creativecommons.
org/licenses/by-nc-nd/3.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4865

8 NATURE COMMUNICATIONS | 5:3865 | DOI: 10.1038/ncomms4865 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

www.ccdc.cam.ac.uk/data_request/cif
www.ccdc.cam.ac.uk/data_request/cif
http://www.nature.com/nature
http://npg.nature.com/reprintsand
http://npg.nature.com/reprintsand
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Syntheses and structures

	Figure™1Multi-bistability.Representative plot (a) and scheme™(b) of the adopted approach to the synthesis of selectively photo-excitable molecules, in which different SCO-active chromophores are incorporated into the same structure. HT, IM and LT are the 
	Figure™2Structure of ligand HL.The central imidazole moiety bridges two discrete tridentate-binding sites
	Figure™3Crystal structures of lbrackFeII4rbrack and lbrackFeIII2FeII2rbrack.(a) lbrackFeII4rbrack (position A) and (b) lbrackFeIII2FeII2rbrack at 100thinspK. HS-FeII centres are shown in green; LS FeII, sky-blue; LS-FeIII, orange; C, grey and N, blue. For
	Figure™4Controlled potential absorption spectra of lbrackFeII4rbrack.The absorption spectra show three key processes on increasing the applied potential from 0.5 to 1.2thinspV: a decrease in LS-FeII MLCT band (501thinspnm) intensity, an increase in LS-FeI
	Figure™5Magnetic susceptibility measurements.The thermal and light-induced magnetic susceptibility data collected for lbrackFeII4rbrack (empty markers; dark blue, heating mode; light blue, cooling mode; green, 532thinspnm laser; red, 808thinspnm laser) an
	Controlled potential absorption spectra
	Temperature-dependent magnetic susceptibility
	Selective photoswitching

	Discussion
	Figure™657Fe Mössbauer spectroscopy.(a) The light irradiation-dependent 57Fe Mössbauer spectra of lbrackFeIII2FeII2rbrack at 5thinspK. (b) The Mössbauer spectra confirm that irradiation with 532thinspnm (green) laser results in FeII-specific LIESST, while
	Methods
	X-ray crystallography
	Magnetic measurements
	Mössbauer spectra
	Single-crystal absorption spectroscopy
	Cyclic voltammetry
	Ultraviolet-visible-near infrared spectroscopy
	Controlled potential spectroscopy
	NMR measurements
	Elemental analysis
	General synthesis
	Preparation of 2-bromo-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine (1)
	Preparation of 6-(3,5-dimethyl-1H-pyrazol-1-yl)-2-pyridinecarboxylaldehyde (2)
	Preparation of 1,2-bis[6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrid-2-yl]-2-hydroxy-ethanone (3)
	Preparation of bis-[6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrid-2-yl]glyoxal (4)
	Preparation of 2-phenyl-4,5-bis[6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrid-2-yl]-1H-imidazole (HL)
	Preparation of lbrackFeII4(L)4rbrack complex
	Preparation of lbrackFeIII2FeII2(L)4rbrack complex
	Details of magnetic measurements on lbrackFeII4rbrack

	AromíG.AguilàD.GamezP.LuiscF.RoubeauO.Design of magnetic coordination complexes for quantum computingChem. Soc. Rev.415375462012BousseksouA.MolnárG.DemontP.MenegottoJ.Observation of a thermal hysteresis loop in the dielectric constant of spin crossover co
	This work was supported by a Grant-in-Aid for Scientific Research and for Priority Area (’Coordination ProgrammingCloseCurlyQuote area 2107, No. 21108006) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, by a research grant 
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




