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Résumé 
 

Mots-clés: capteurs, matériaux moléculaires, transition de spin, Monte Carlo Entropic 

Sampling 

 Cette thèse concerne les études théoriques et expérimentales de composés à transition de 

spin (SCO: “spin crossover compounds”) menées pour déterminer la possibilité de les 

implémenter dans des capteurs de température et/ou de pression. L’analyse théorique a été 

effectuée en utilisant les deux modèles les plus utilisés dans ce domaine de recherche 

notamment: le modèle équivalent d’Ising et le modèle de couplage Atom-Phonon. Pour 

générer les états des systèmes SCO, les méthodes d’échantillonnage entropique de Monte 

Carlo  (MCES: «Monte Carlo Entropic Sampling») et de Monte Carlo Metropolis (MCM) ont 

été utilisées. La méthode MCES a été utilisée pour étudier les systèmes à basse dimensions 

réduites et la méthode MCM pour les systèmes de grande taille. Ainsi le rôle de la 

coopérativité dans un système SCO a été analysé et l’influence des interactions des molécules 

de surface avec leur environnement local a été étudiée. Il a été montré qu’une transition 

procédant par plusieurs étapes (« multi step transition ») est pilotée par trois types 

d’interactions: celles à courte portée, celles à longue portée et celles entre les molécules de 

surface avec leur environnement. Ces  résultats peuvent être utilisés pour assembler les 

matériaux de type SCO dans des dispositifs technologiques parce-que, comme il a été montré, 

il est nécessaire de tenir compte des interactions qui peuvent exister entre les  molécules de 

surface et leur environnement. De plus, des résultats importants ont été obtenus en analysant 

le rôle de l’architecture du système. En considérant des systèmes ayant le même nombre de 

molécules, il a été montré qu’un système de forme carrée présente un caractère plus coopératif 

qu’un système de type échelle qui à son tour présente un caractère plus coopératif qu’un 

système de type chaîne. 

 Les résultats obtenus en appliquant le modèle de couplage Atom-Phonon ont été 

comparés en utilisant trois méthodes différentes pour résoudre le Hamiltonien du système: 

l’approximation du champ moyen, la matrice dynamique et l’approximation parabolique. 

Ainsi il a été montré que la méthode de l’approximation parabolique est meilleure que la 

méthode de l’approximation du champ moyen et que les résultats obtenus avec cette méthode 

sont très proches de ceux obtenus avec des calculs exacts. Ceci est du au fait que cette 

méthode est très proche de la méthode de calculs exacts. 

 Les études expérimentales des composés  SCO [Fe(hyptrz)]A2∙H2O et 

[Fe(hyetrz)3]I2∙H2O ont révélées leur propriété thermo- et piézo-chromique. Une grande 

variété de techniques a été employée pour la caractérisation des deux composés. Ainsi les 

analyses thermiques du premier composé sous l’action d’une pression externe ont été réalisées 

avec une cellule de pression à gaz. Ce type de cellule a l’avantage de maintenir le caractère 

hydrostatique sur le domaine entier de température. Le deuxième composé a été caractérisé en 

utilisant des techniques telles que: caractérisation optique, DSC, spectroscopie Mössbauer  et 

un dispositif  micromécanique pour l’application de la pression. Les résultats ont démontré la 

faisabilité de détection de la pression en utilisant un capteur ou marqueur basé sur un composé 

SCO fonctionnant à température ambiante. Pour le composé SCO [Fe(hyetrz)3]I2∙H2O, une 

valeur seuil de la pression de contact autour de 30 MPa a été obtenue qui induit de manière 

irréversible un changement de couleur du matériau moléculaire. Ceci résulte de la transition 

de l’état HS vers l’état  BS. De plus, la possibilité d’une transition qui induit un changement 

de couleur en sens inverse en utilisant un autre stimulus (température) a été démontrée, ce qui 

permet de réutiliser le capteur. 



 

 

 

 

 A partir de ces résultats, un nouveau type de capteur fonctionnant sur le principe d’une 

détection optique a été proposé qui permettrait la détection concomitante à la fois de la 

température et de la pression. Ce nouveau type de capteur est basé sur deux composés SCO 

qui sont caractérisés par des transitions progressives. En considérant les développements 

récents dans le domaine SCO cet objectif pourrait être très bientôt atteint. 

 



 

 

 

 

Abstract 
 

Keywords: sensors, molecular materials, spin transition, Monte Carlo Entropic Sampling 

 This thesis is result of theoretical and experimental studies on spin crossover 

compounds (SCO) with the purpose of implementing them in temperature and/or pressure 

sensors. The theoretical analysis was performed using two of the most employed models in 

the field namely: the Ising-like model and the Atom Phonon coupling model. For generating 

the states of SCO systems the Monte Carlo Entropic Sampling (MCES) and Monte Carlo 

Metropolis (MCM) methods were used. The MCES method was used for small systems and 

the MCM method for large systems. Thus, we analyzed the role of cooperativity of a SCO 

system and studied the influence of interactions of the surface molecules with their local 

environment. We have shown that behind a multi-step transition there are three types of 

interactions: the short-range interactions, long-range interactions and interactions of surface 

molecules with their environment. These results are applicable in the construction of SCO 

materials based devices because, as we have shown, it is necessary to account for the 

interactions that may occur between the molecules on the surface and their environment. 

Moreover, important results were obtained by analyzing the role of system’s architecture. 

Considering equal number of molecules systems, we have shown that a square system is more 

cooperative than a ladder type system which in turn is more cooperative than a chain-type 

system. 

 The results obtained using the Atom-phonon coupling model were compared using three 

different methods to solving the Hamiltonian system: mean field approximation, dynamic 

matrix and parabolic approximation. Thus it was shown that the parabolic approximation 

method is better than that of the mean field approximation method and that the results 

obtained by this method are very close to reality. This is because this method uses exact 

calculation. 

 The experimental studies on SCO compounds [Fe(hyptrz)]A2∙H2O and 

[Fe(hyetrz)3]I2∙H2O revealed their thermo- and piezo-chromic character. A variety of 

techniques have been employed for the characterization of the two compounds. Thus the 

thermal analysis of the first mentioned compound under the action of external pressure was 

carried out using a gas pressure cell. This type of cell has the advantage of maintaining the 

hydrostatic character over the entire range of temperature. The second compound was 

characterized using techniques such as: optical characterization, DSC, Mössbauer 

spectroscopy and a micromechanical home-made device for the application of pressure. The 

results demonstrated the feasibility of pressure detection using a molecular spin crossover 

based sensor/marker operating at ambient temperature. For the SCO compound 

[Fe(hyetrz)3]I2∙H2O, we obtained a threshold value of the contact pressure of about 30 MPa to 

irreversibly induce the color change of the molecular material, due to the spin state switching 

form HS to LS state. Moreover, the possibility of switching back the color using another 

stimulus (temperature) was demonstrated, making this sensor reusable. 

 Taking into account the above mentioned results we proposed a new type of sensor with 

optical detection that would allow the concomitant detection of both temperature and 

pressure. This new type of sensor is based on two SCO compounds that exhibit gradual 

transitions. Considering recent developments in the SCO field this objective could be 

achievable in the near future. 
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Introduction 

 In the broadest definition “sensor converts input signals of a physical nature into 

electrical output” [1]. If up until a few years ago sensors were being used for prevention 

purposes, today’s sensors have become core elements in automation systems a sensor can 

perform while in operation. We can divide them into four general categories as follows: 

� Monitoring, controlling and adjusting the system to increase performance; 

� Security and alarm in order to enhance system security and to anticipate possible 

miscues; 

� Diagnostics and analysis in order to better understand the operation of the system and 

find ways to improve it; 

� Interface and navigation in order to increase functionality. 

 Nowadays the most used types of sensors are: transducers, functional sensors and smart 

sensors. Intelligent sensors distinguish themselves from other types of sensors due to their 

extra conditioning process control, digital interface and operating system.  

 It’s hard to imagine today’s world without automated equipment. From mobile phones, 

computers or washing machines to cars and airplanes, all contain sensors that make our lives 

easier and safer. In fact, there are no industrial areas which operate without measuring, 

testing, monitoring and automation. In all branches of the industry sensors are widely used to 

automate the production process. With the aid of sensors, the production capacity has been 

greatly improved and is continuously growing. This is also due to the particular concern, seen 

in recent years, regarding minimizing energy consumption, miniaturization, easy handling, 

automation and multiple use of all electronic equipment. In this respect, electronic equipment 

manufacturers as well as science research groups are constantly working to meet the 

desideratum. Special consideration is given to the development and optimization of various 

types of sensors with increased sensitivity and higher technical characteristics, due to the ever 

growing demand on the electronics market. In this high-tech field Europe, and especially 

Germany, holds a leading global position, not only in terms of technological standards but 

also in terms of global market shares. A comparison between commercial studies [2,3] in 

terms of demand and the results of surveys conducted by the Association for Sensors and 

Measurement (AMA) [4] on the sensor suppliers market, shows that European suppliers cover 

about 35 % of the global demand for sensors. The AMA [5] estimates that around 1000 

industrial sensors manufacturers are located in Europe as compared to 3000 worldwide. 

 The continuous development of intelligent electronic devices has led to a significant 

increase in sensors demand on the market. Fingerprint reader mobile phones and/or the 

differentiation in tactile pressure on touch screen phones are increasingly being used and 

evolving. It is expected that, in the near future, handsets will have built in spectrometers in 

order to measure produce freshness. 8-core processors with 14 nm manufacturing technology 

and graphics cards with thousands of microprocessors are increasingly being found in 

computers marketed in recent years. 

 In 2012, INTECHNO CONSULTING in a report of 1520 pages [6] concerning the 

sensor elements, sensor modules, sensors and sensor systems, has reported an annual growth 

rate of non-military world market for sensors of 7.9% between 2006 and 2011 with a 

worldwide market sensors of 81.6 billion euros in 2006 increasing at 119.4 billion euros in
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2011 and forecasted at 184.1 billion euros by the end of 2016. In this report a slight decrease 

in the percentage of Europe's sensors market in 2016 is noted in Figure 1. 

 The market for sensor technology is highly heterogeneous and difficult to break down 

even for those directly involved. However, a noticeable shift from the market for capital 

goods to the consumer goods market is being observed, with increasing emphasis on the final 

products. Therefore, the consumer end products sensor market has, in general, a faster growth 

rate than the measurement focused products and control technologies. New applications, at 

considerable growth rates, are being found in domestic equipment, safety and security tools, 

diagnostic and therapeutic medical equipment and automotive engineering. The highest 

growth rates are being recorded for image sensors, acceleration sensors, pressure sensors, 

position and proximity sensors as well as biochemical sensors [7]. The use of these sensors on 

an ever larger scale has resulted in a reduced price and stimulated the increase in production 

of sensors. A graph of the sensor market developments in the past 10 years is shown in Figure 

2. It can be seen that the market grew by 6.3% on average each year albeit with a significant 

decline in 2008-2009 due to global crisis. 

2.8%

34.2%

0.9%

30.8%

1.6%

29.8%

2006

2011

1%

34.4%

1.7%

28.3%
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2.9%

28.9%

1%

38.1%

1.9%

27.3%

 

   

Figure 1 Analysis and Forecast of the World market of sensors until 2016: subdivision by 

regions [6] 



Introduction 

 

3 
 

 SensorsPortal has published an estimation of sensors market evolution for the next 5 

years [8]. The global sensors market is expected to grow from 95.3 billion dollars in 2015 to 

154.4 billion dollars by 2020 with an annual growth rate of 10.1% for a period of 5 years, 

between 2015 and 2020. The growth rate of image, flow and level sensors is expected to 

increase by 11.7% over the next five years and go from 25.6 billion dollars in 2014, 28.9 

billion dollars in 2015 to almost 50.2 billion in 2020. Chemical sensors and bio-sensors, an 

important segment of the sensor market, is expecting to grow in 2015 to 19 billion dollars. 

With a growth rate of 11.5%, analysts anticipate a growth to nearly 32.8 billion dollars in 

2020. Intelligent sensors market is expected to grow to 10.46 billion dollars in 2020, a 

36.25% growth rate from 2014 to 2020. US made sensors market, with a 30% growth rate, is 

expected to reach 438 million dollars by 2018. An important role in maintaining the stability 

of this segment of activity is reinvestment by the industry of 10% of its turnover in research, 

innovation and development. 

  

 

Figure 2 The evolution of sensors market [9] 

 Depending on the clasification criteria of sensors, start from very simple to very 

complex sensors. Thus, depending of the errors of measurement, the sensors are classified by 

deviation and resolution. Other classification criteria for classification sensors are after 

specifications (price, size, weight, stability, linearity, resolution, switching signal, ...), 

material (organic, inorganic, conductor, insulator, ...) phenomenon of conversion 

(thermoelectric, piezoelectric, photoelectric, fotomagnetic, magneto, Termoopt, fotoelastic, 

electroelastic, chemical, biological, ...), scope (agriculture, construction, automotive, military, 

marine, ...) stimuli (acoustic biological, chemical, electrical, magnetic, optical, mechanical, 

thermal, piezo, ...). 

 An important category of sensors are temperature sensors. These sensors vary from very 

simple, thermostatic on / off used in domestic devices (eg. water heater) to the semiconductor 

sensor with a high sensitivity used in complex processes (eg. the control of furnace plant). 

Also, these sensors can be divided into two basic types: 

• sensors which require contact with the object whose temperature it is desired to 

monitor and are called contact temperature sensors; 
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• sensors which use convection and radiation to monitor temperature change and 

are called non-contact sensors. 

 In turn, these two types of sensors can be subdivided in other basic types: 

thermocouples, resistive temperature sensors (RTDs - resistance temperature detectors, 

thermistors), infrared, bimetallic, sensors with liquid dilator, sensors that changes its 

molecular state and silicon diodes. 

 Due to its simplicity, the thermocouple is the most common temperature sensor used in 

the industry. Easy to use, with a rapid response to temperature change, small size, stability 

[10-12] and a temperature range from -2000
o
C to + 26000

o
C, thermocouple consists of two 

junctions of dissimilar metals joined at one end. The operating principle of the thermocouple 

is based on direct thermoelectric effect (Seebeck effect). It consists in the appearance of a 

tensions termoelectromotoare in a closed circuit consisting of two different semiconductors 

when contacts are maintained at different temperatures. 

 Resistive temperature sensors are best suited to make accurate and repeatable 

temperature measurements. RTDs are manufactured from metals whose resistance increases 

with temperature. This resistance is directly proportional to the length of the metal wire and 

inversely proportional to the cross-sectional area and increases linearly with temperature. 

Made from high purity materials (platinum, copper, nickel), RTD's are temperature sensors 

with a precise and fast response [13]. Operating temperature range of RTD's is between -

2000
o
C to + 6000

o
C. 

 The same mode of operation of the RTD's, thermistors are resistive temperature sensors 

manufactured from solid semiconductors [14] having a positive or negative temperature 

coefficient. Most used thermistors have a negative temperature coefficient (NTC) which 

means that the resistance value decreases with increasing temperature. Compared with RTD's 

and thermocouples, thermistors are weaker in construction and require more attention during 

installation to prevent crushing. 

 In the bimetallic devices, two metals with different thermal properties are soldered back 

to back. When heated, a part of the bimetallic strip deform more than the other. The main 

advantage of bimetallic devices is portability. Also, another advantage is independence from a 

power source. As disadvantage, the bimetallic devices are not accurate as the electronic 

devices. These devices are used in applications "ON / OFF" or "OFF / ON". 

 Specially manufactured for use in cryogenic temperature ranges, the silicon sensors 

have good conductivity and linearity in this temperature region. With increased robustness the 

silicon sensors are designed for repeatable measurements with good accuracy in temperature 

ranges between 1.4K and 500K [15]. This type of sensor is suitable for use in very high 

magnetic fields or in radiation medium [16]. 

 Other important sensors are pressure sensors. A pressure sensor can generate an analog 

output proportional to pressure at it is or has a switching output operating at a predetermined 

pressure. Depending on the activity, the pressure sensors are classified as follows: vacuum 

sensors, sensors for medium pressure (10
2
 Pa - 10

8
 Pa) and sensors for high pressure (> 10

8
 

Pa) [17]. The most used sensitive elements to measure pressure are embedded diaphragm, 

plunger with spring, corrugated diaphragm, manometer open cell, closed cell manometer, 

biconical cell, bellows, Bourdon tube, twisted helical tube, one-eyed tube. The high pressures 

are measured using the following conversion types: piezoelectric effect and electromechanical 

oscillator. Sensors that use piezoelectric principle have the advantage of being robust, 

dynamic and with a response time of milliseconds. Stability and high precision sensors show 

using electromechanical oscillator principle but require numerical corrections which involve a 

microprocessor. 
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 Major problems arise when desired to measure the cryogenic or high temperatures at 

very high pressures. These problems occur due to changes in the properties of materials used 

in sealing systems. Using sensors that require removal of supply wires and / or of output 

signals makes it difficult to seal the system and increase the cost of production. The 

temperature and pressure measurement in hazardous areas is also a problem. A solution to 

these problems would be to use optical detection sensors. Thus, the problems to sealing wires 

or the need to introduce the energized wires in explosive environments disappear. 

 Decrease energy consumption and miniaturization are other requirements of the 

consumer market. All these requirements and problems can only be solved by developing new 

materials with significantly improved physical properties. Materials with spin transition (ST), 

due to the physical differences between their two states, such as different colors, different 

volume or different electrical conductivity, have captured the attention of many research 

groups and large companies involved in research. The ever growing interest in these materials 

is due to their high applicability potential in areas such as temperature and/or pressure 

sensors, information storage, micro switches and displays. 

 The purpose of this thesis is to offer new insight regarding the spin transition 

phenomenon from both points of view theoretical and experimental. Thus, in the first section 

of Chapter 1 an introduction in SCO materials and the main perturbation factors that induce 

the spin transition is presented. In the second part of this chapter the main models and 

techniques used in characterization of behaviors of these interesting materials are presented. 

 In Chapter 2 we describe the behaviors of some SCO compounds and their optical 

proprieties in the HS and LS states. So, taking into account the different colors of the two 

states, in the second part of this chapter, new proposed types of sensors involving SCO 

compounds, are presented. To understand how the behavior can be influenced by the external 

perturbation factors, architecture or internal interactions, in Chapter 3, using the Ising like 

model [18-20], a theoretical study concerning of these main factors that determine the 

evolution of SCO behavior is presented. Also, in this chapters, the influence of short and long 

interactions together with the architecture effect are studied. A new term is introduced in 

order to account for the interaction of edge molecules with their local environment and 

simulations were performed to investigate the influence of temperature and pressure. 

 In Chapter 4, using the Atom-phonon coupling model a theoretical analysis of spin 

crossover nanochains using a parabolic approximation was performed. It is well known that, 

apart from the system’s cooperativity, which influences the hysteretic behavior of SCO 

complexes, the size of the system also plays a determinant role. The properties of the system 

are analyzed using a parabolic algorithm as a new method proposed in order to take into 

account the phonon contribution. Based on exact calculations, this method is more realistic 

and more efficient than the mean-field approximation (MFA). In particular, both the parabolic 

algorithm and the dynamic-matrix method are tested and compared and the analysis of the 

system’s behavior shows that large size systems can be treated without generating all the 

system states. We also analyzed the role of degeneracy, and the thermal variation of both the 

entropy and heat capacity in the ferromagnetic-like coupling case. These studies play an 

important role in the choice process of SCO compounds for the desired application. 

 To highlight the temperature and pressure influence on SCO behavior, in Chapter 5 we 

present an experimental analysis of [Fe(hyptrz)]A2∙H2O and [Fe(hyetrz)3]I2∙H2O SCO 

compounds. If for first compound a gas pressure cell was used to illustrate the thermal 

behavior at different pressures, for the second compound a home-made micromechanical 

device was used to analyze the pressure influence. The study is accompanied by a theoretical 

study in the framework of the Ising-like model allowing us to predict the bistability region of 

these two SCO compounds pertaining to sensor applications. In the end of this chapter, a new 

type of sensor involving two SCO compounds is proposed. This type of sensor is able to 



Introduction 

 

6 
 

simultaneously indicate both temperature and pressure at which it is. It is very important to 

mention that for the fabrication of this sensor type, two SCO materials that exhibit a gradual 

transition without hysteresis are required. 

 The manuscript ends with general conclusions and perspectives. 
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1 State of the art 

1.1 Introduction 

 Sensors market growth is a consequence of the ongoing development of new 

equipment and devices that must meet the increasingly stringent requirements of the end user. 

From miniaturization, multi-functionality and low power consumption, to applications that 

require high performance computing are some of the criteria in mind of the user when 

purchasing the desired product. Size reduction of electronic components has led to an increase 

in production costs due to the expensive equipment and costly components used in 

production. This is one of the reasons why, in recent years, miniaturization of electronic 

components reached the economic limit due to production costs. This is associated with the 

limiting issue in the miniaturization of components due to physical phenomena that occur 

when the material reaches a critical minimum size. Continuous technological development 

has led many research groups, including physicists, chemists and engineers, as well as 

companies to develop new materials with far superior physical properties which can be 

controlled at the molecular level [1-4]. Implementation of these materials in devices at both 

the macroscopic level and at the single molecule one, can be done only after a deep 

comprehensive understanding of the physical and chemical properties of the material. The use 

of these materials in the manufacturing process of electronic components should result in a 

reduction of the size of the components by orders of magnitude. 

 In this context, over the recent years, chemists have developed new techniques for the 

synthesis of molecular compounds with unique properties. An important category of 

multifunctional molecular compounds are the spin transition compounds (SCO) that attracted 

the attention of many research groups because of their potential applications [2,5-9]. First 

observed in the early 30s by L. Cambi and L. Szego, while studying the temperature 

dependence of magnetic susceptibility in molecular compounds containing Fe (III) (3d
5
) 

centers [10], the phenomenon of spin transition (ST) was later discovered in other compounds 

containing metallic centers with 3d
4
-3d

7
 electronic configuration, such as: Fe (II) [11-13], Co 

(II) (3D
7
) [14-17], Co (III) (3d

6
) [18-20], Mn (II) (3d

4
) [21,22], Mn (III) (3d

5
) [23-26], Cr (II) 

(3d
4
) [27-29]. These materials have a special particularity which is to switch between two 

stable magnetic states: a diamagnetic low spin state (LS) and a paramagnetic high spin state 

(HS). The two spin states are characterized by different physical properties such as different 

colors, different volumes or different electrical conductivities [30-32]. 

 The most studied spin transition compounds so far have as a central ion Fe (II) in an 

octahedral configuration. The five orbitals of the Fe (II) ion are divided into two subsets 

[33,34]. A set consisting of t2g (dxy, dyz, dzx) orbitals and the second set consisting of two others 

eg orbitals ( )2 2 2z x -y
d , d  with an energy higher than the t2g orbitals energy (Figure 1.1). 

Depending on the strength value of crystal field, represented by the energy gap of the levels 

t2g and eg, denoted by δ (10Dq) and the value of the electron pairing energy, П, the six 

electrons can occupy the two different groups of orbitals, corresponding to the two following 

cases: (i) if the ligand field, δ is greater than the pairing energy, П, δ>П, in violation of 

Hund’s law, the electrons occupy the lowest energy orbitals, t2g. In this case the sum of the 

spins is minimum (S = 0) and the compound will be in the LS state. For the second case, 

when δ<П following Hund’s law, electrons will occupy a number of orbitals as high as 

possible and the sum of the spins is maximum (S = 2), and the compound is in the HS state 

(Figure 1.2). The transition from one state to another is also characterized by a change in the 

volume of the molecule, due to the metal-ligand length change, this one being longer in the 

HS state than in the LS state. The spin transition phenomenon, represented by the transition 
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1.2 The spin transition induced by temperature 

 One of the most used physical perturbations in order to induce the spin transition is the 

temperature. Depending on the type and intensity of the interactions between molecules, spin 

transition compounds may show different magnetic behavior with temperature variation 

(Figure 1.3): gradual or abrupt [56], two [57-61] or multi-steps [62-64], complete or 

incomplete [49,65] transitions, with or without hysteresis. The gradual transition is specific to 

systems characterized by very weak intermolecular interactions or to diluted systems with 

non-active impurities. Experimentally, for the first time, the two step ST in 1D coordination 

polymers was observed on the compound [Fe(NCS)2(bdpp)], (bdpp = 4,6-bis(2’,2’’-

pyridyl)pyrazine) with its selenium analogues [Fe(NCS)2(bdpp)] and was attributed  to the 

presence of two different crystallographic sites [66]. With a wide plateau (HS-LS) the two 

step ST was observed in [67,68]. The synergistic effect between intramolecular interactions 

favoring the mixed-spin state and intermolecular interactions favoring like-spin species 

domains are on the origin of two step transition in the binuclear iron(II) compound 

[Fe(bt)(NCS)2]2(bpym), (bt = 2,2-bi-2-thiazoline; bpym = 2,2’-bipyrimidine) [57]. 

 

Figure 1.3 Various types of thermal induced spin transition: a) with hysteresis, b) gradual, c) 

two steps transition, d) incomplete [65,69] 

1.3 The spin transition induced by pressure 

 A second main external perturbation that has been used to induce the spin transition is 

the application of an external pressure. In 1969 Ewald et al. [70] reported the first study on 

the pressure effect on the spin transition compounds (CTS). The study was carried out on a 

Co(II) based compound in solution. A few years later Bargeron et al. [71] and Slichter et al. 

[72] showed that, by applying an external pressure, the transition temperatures are shifted to 

higher temperatures, with shifts of about 15-20K/kbar. The research group led by Prof. Varret 

from Versailles had an important contribution to this topic [73]. 

 From Figure 1.4 it can be seen that, by increasing the applied pressure the metal-ligand 

distance decreases resulting in the increase of the ligand field energy, Δ, and a decrease in the 

activation energy Ea. The transition from the LS state to the HS state occurs when the ligand 

field energy becomes greater than the energy of electron pairing. By applying an external 

pressure the volume of the molecule is decreased thus favoring the LS state. 

 CTS behavior under pressure is usually reversible [6,73]. However, in some cases, 

following the release of pressure the compound no longer returns to its initial state [74,75]. 

Applying pressure can cause irreversible changes in the electronic structure of the compound 

as well as in the crystallographic structure [72,76]. 
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Figure 1.4 Schematic representation of the pressure influence. 

 Using hydrostatic pressure cells in conjunction with the SQUID, Mossbauer or optical 

systems for measuring optical reflectivity constitute the main types of characterization of the 

thermal and piezo behaviors of CTS [6,77-79]. 

1.4 Light induced spin state change 

1.4.1 Light Induced Excited Spin State Trapping (LIESST) 

 By irradiating a Fe (II) based complexes in liquid phase, Fe(biz)3(ClO4)2, 

Fe(ppa)2(ClO4)2 and Fe(pyimH)3(BPh4)2, (biz = 2,2'-bi-1,4,5,6-tetrahydropyrimid- ine; ppa = 

N
2
-(2-pyridylmethy1)picolinamidine; pyimH = 2-(2-pyridylimidazole)), with a 530 nm 

wavelength light,  McGarvey et al. [80] were able to disrupt the equilibrium between the two 

spin states. Two years later, in 1984, Decurtins et al. [81], by irradiating the [Fe(ptz)6](BF4)2 

(ptz = 1-propyltetrazole) compound in the solid state with green light (λ = 514 nm ) at 20K, 

were able to induce a transition from the LS state to a HS state which was maintained for 

more than 10
6
 s. This effect was called Light Induced Excited Spin State Trapping (LIESST). 

In 1986, Hauser [45] demonstrated that this process is reversible by irradiation with λ = 820 

nm wavelength light. An explanation for this phenomenon is illustrated in Figure 1.5. As one 

can see, the first LS → HS transition is induced by irradiating the compound, in the 

absorption band LS, 
1
A1, with λ = 514 nm wavelength light, populating one of the excited 

levels 
1
T1 or 

1
T2. This new state has a very short lifetime causing the system to relax to an 

intermediate state, 
3
T2 and 

3
T1 followed by a transition to a metastable HS state, 

5
T2. Since the 

energy barrier ΔEHL is high, the lifetime of this state is greater than 10
6
 s [81]. The 

phenomenon of reverse-LIESST [45] involves irradiating the absorption band of the HS state 

with a λ = 820 nm wavelength thus populating state 
5
E. From this state the system can relax in 

one of the 
3
T1 and 

3
T2 states and, ultimately, in LS 

1
A1. 

 The discovery of the LIESST phenomenon opened several new research directions for 

scientists. Thus, Herber and Casson in 1986 [82], using IR spectroscopy, found out that there 
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are temperature limits beyond which this phenomenon is no longer noticeable. In 1991 a 

study by Hauser et al. [83] on the lifetime of the photo-induced HS state showed that the 

lifetime values are closely related to the transition temperature T1/2. More specifically, Hauser 

noted that the lifetime of the photo-induced HS state is higher for the compounds with lower 

transition temperatures. Over the years several studies on the LIESST effect [56,84-87] have 

been reported and new methods of excitation have been proposed: hard X-ray induced excited 

spin state trapping (HAXITH) [88,89]nuclear decay-induced excited spin state trapping 

(NIESST) [90-92], electron-induced excited spin state trapping [93]. 

 

Figure 1.5 Jablonsky diagram for LIESST and reverse-LIESST effects [44] 
 

1.4.2 Ligand-driven light-induced spin change (LD-LISC) 

 The first results reported on the effect of LD-LISC were performed on the 

( ) ( )
4 2

Fe stpy NCS   compound (where stpy = 4-styrylpyrydine) by J. Zarembowitch's group 

[94]. This method involves irradiating the compound with a wavelength characteristic of the 

chemical reaction mechanism of the photochemical isomerization used in the cis-trans 

isomerization of the ligand. Thus, irradiating the compound with a chemical isomerization 

reaction characteristic wavelength allows for modifications in the behavior of the magnetic 

system. This phenomenon corresponds to the LD-LISC effect. 
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Figure 1.6 The crystallographic structure for compound [Fe(trans-stpy)4(NCSe)2] and 

[Fe(cis-stpy)4(NCSe)2] [95]. 

 The LD-LISC effect leads to many potential applications such as information storage at 

ambient temperature. 

 

Figure 1.7 Temperature dependence of χMT  for compound 

Fe(stpy)4(NCSe)2 ([96]). 

1.5 Magnetic field induced spin transition  

 Spin transition may also be triggered by the application of a magnetic field, thus 

stabilizing the spin state characterized by a significant magnetic moment, i.e. the HS state. 

Historically, this effect was first reported in 1983 by Y. Qi et al. [97], who reported a 0.12K 

shift of the hysteresis loop towards lower temperatures in the case of the compound

( ) ( )
2 2

Fe phen NCS   . 

 Studies on the effect of the magnetic field on the Co (II) and Fe (II) based compounds 

were also carried out by Bousseksou et al., using a magnetic field of about 32T [98]. They 

have shown that by applying a magnetic field when the CTS is on the increasing branch of the 
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thermal hysteresis loop induces a quasi-complete and irreversible transition from the LS to the 

HS state. 

 

Figure 1.8 Temperature dependence of the effective magnetic moment  

of [Fe(phen)2(NCS)2] [97]. 

 

Figure 1.9 Different set of isotherms nHS(B) showing the irreversible triggering effect of 

Co(H2(fsa)2en)(pz)2 in a pulsed magnetic field in the metastable LS state [99]. 
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1.6 Electric field induced spin transition  

 The transition from one state to another can also induce changes in the electrical 

properties [2,37,100]. This was first shown by Rotaru et al. [2,37,101] in a study on the 

electrical conductivity of the [Fe(Htrz)2(trz)](BF4) (Htrz = 1H-1,2,4-triazole, trz=1,2,4-

triazole) spin crossover compound. They showed that the electrical conductivity decreases by 

two orders of magnitude when the transition from the LS state to the HS state occurs (Figure 

1.10). This was shown to be a consequence of the fact that the thermal activation energy of 

the electrical conductivity is lower in the LS state than in the HS state. 

 

Figure 1.10 Temperature dependence of the electrical conductivity of [Fe(Htrz)2(trz)](BF4) 

(Htrz=1H-1,2,4-triazole) [102] 

 Another important result reported on the charge transport behavior is that the Fe(II) 

centers participates at the charge transport mechanism [103]. Moreover, it was shown that by 

applying an electric field, the transition from the HS state to the LS state can be induced 

(Figure 1.11) [104].  

 

Figure 1.11 Temperature dependence of current under an applied electric field of step type 

for compound ([104]). 
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1.7 Theory. Models and methods 

 In parallel with the various and numerous investigations on CTS, the need for 

describing and understanding the phenomena and processes occurring under the action of 

various external stimuli has led to the development of theoretical models and simulation 

methods regarding CTS behavior [105]. Proposed in the early 70s [106,107], the Wajnflasz 

and Pick model is the first one to introduce the concept of molecular interaction. This model 

is able to qualitatively simulate the temperature induced spin transition. The model introduces 

a fictious spin with the eigen values σ = 1 (HS) and σ = -1 (LS). The interactions between the 

neighboring centers are described by an Ising type term, J. The total Hamiltonian is resolved 

by using mean field approximation and by taking into account the interactions with first order 

neighboring molecules only. Intermolecular interactions are not considered in this model. 

 In 1972, Bari and Sivardiere [108] continued the study by emphasizing some of the 

physical aspects that were ignored by the model of Wajnflasz et al., such as the temperature 

dependence of the intensity of the interactions. However, both models have a disadvantage 

concerning the entropy of the system associated with the two states (HS and LS) which does 

not show changes in the vicinity of the transition point which is a major issue [109]. 

 The first model proposed to describe the influence of an applied external pressure on the 

spin transition behaviour is the Slichter and Drickamer model, developed in 1972 [72]. This 

model is the first to take into account the intermolecular interactions and, for years, has been 

the basis for other proposed models in order to point out the origin of interactions such as the 

atom-phonon coupling model or the mechano-elastic model. An important aspect is that this 

model entails a system of randomly distributed molecules, each molecule having its spin state 

independent of that of the neighboring molecule with which it interacts. Using this model and 

taking into account the intensity of interactions represented by the term Γ, both gradual 

transitions and step like transitions with and without hysteresis could be reproduced. 

 The model proposed by Sorai and Seki [110] in 1974 considered that the same spin state 

molecules are organized into independent domains. Their critical size can be calculated using 

calorimetric measurements. This model has the disadvantage that it cannot reproduce 

transitions with hysteresis. 

1.7.1 Slichter and Drickamer model 

 When the molecules are in the solid state, intermolecular interactions play an important 

role in the characteristics of the spin transition. One of the most well-known thermodynamic 

approaches, taking into account the intermolecular interactions, is the thermodynamic model 

of Slichter and Drickamer [72], in which the enthalpy of the system, is described by the 

following equation: 

= + − + Γ
LS LS HS HS mix HS LS

G n G n G TS n n  (1.1)

where Γ  is the intermolecular interaction parameter and Smix is the mixt entropy which is 

defined as: 

( ) ( )ln ln= − +  mix LS LS HS HS
S R n n n n  (1.2) 

 Considering GLS the reference of the energy, with GLS = 0 and HSG G H T S∆ = = ∆ − ∆  

(where H∆ and S∆  represent the variations in enthalpy and entropy respectively during the 

spin transition), one obtains: 

( ) ( ) ( ) ( )1 1 ln 1 ln /= ∆ + Γ − − − − + + ∆  HS HS HS HS HS HS HS HS
G n H n n RT n n n n n S R  (1.3) 
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The equilibrium condition of the system, 

T,

0
HS P

G

n

 ∂
= 

∂ 
, allows to obtain the temperature 

dependence as a function of the HS spin fraction: 

( )1 2

1
ln

∆ + Γ −
=

 −
+ ∆ 

 

HS

HS

HS

H n
T

n
R S

n

 
(1.4) 

The equilibrium temperature of the system, defined for nHS = nLS = 0.5 (the number of 

molecules in the HS state is equal to the number of molecules in the LS state) is given by the 

expression: 

∆
=

∆
eq

H
T

S
 (1.5) 

In the absence of intermolecular interactions, 0Γ = , the HS spin fraction can be expressed as: 

1

1 1
1 exp

=
  ∆

+ − −      

HS

eq

n
H

R T T

 
(1.6) 

 In this case the thermal population of spin states is in accordance with the Boltzmann 

law corresponding to a gradual transition. 

 In the case of 0Γ ≠ , equation (1.3) allows for the computation of the HS fraction, nHS, 

as a function of temperature. Depending on the value of the interaction parameter Γ , several 

transition types can be obtained: 

� gradual, for values of 2
eq

RTΓ < , characteristic of weak intermolecular interactions. 

The derivative 
HS

dT

dn
is positive for 0 1HSn< < and the transition is continuous and 

without hysteresis. 

� abrupt, for values of 2
eq

RTΓ ≈ characteristic of strong intermolecular interactions. The 

derivative 
HS

dT

dn
is positive except for 0.5HSn = . The transition is discontinuous but 

without hysteresis. 

� abrupt with hysteresis for values of 2Γ > eqRT  characteristic of strong interactions. The 

curve  ( )=
HS

T f n  has two extrema indicating the occurrence of thermal hysteresis 

(red curve in Figure 1.12). 
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Figure 1.12 Thermal variation of HS fraction, nHS, for different values of interaction 

parameter Γ (ΔH=7kJ.mol
-1

 and ΔS=50J.K
-1

.mol
-1

) [111]. 

1.7.2 Spiering model 

 In the model proposed by Spiering et al. [112] spin transition ions are considered as 

hard spheres inserted into an elastic, isotropic and homogeneous medium. The molecules are 

treated as point defects in a network causing differences in the volumes of the two LS and HS 

states. The interactions between the molecules in an elastic medium are due to the 

displacement field produced in the crystalline structure as a consequence of the molecular 

volume changes throughout the transition. 

 In this model, a sphere of volume vα  (α = HS, LS), placed in a crystal lattice of volume 

0v  will have an elastic energy given by the expression: 

( )
( )

( )
( )

2 2

0 0

0 0 0

0

1 1
1 1

2 2

α α
α γ γ γ

− −
= − − −

v v v v
e K K

v V
 (1.7) 

where K is the compressibility module, 0γ is Eshelby constant and V is the total volume of the 

crystal. 

 The energy due to differences in the two states of the crystal volume is represented by 

the first term while the surface effect is described by the second term. 

1.7.3 Sorai & Seki model 

 In 1974, Sorai and Seki [110] proposed a different approach concerning the 

organization of the molecules in a SCO system. In their model the molecules are not 

randomly distributed but rather grouped in domains associated with their spin. For a system 

with N domains (each being composed of n molecules) and central transition temperatures Tc, 

the enthalpy of the system is given by the equation: 

( ) ( ) ( ) ( )1 ln 1 ln 1= + − + + − −  HS HS HS LS HS HS HS HS
G n G n G NkT n n n n  (1.8) 

and the mixed entropy of the system is: 
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( ) ( ) ( )ln 1 ln 1= − + − −  mix HS HS HS HS

R
S n n n n

n
 (1.9) 

For the case

,

0
HS T P

G

n

 ∂
= 

∂ 
, the HS spin fraction has the expression: 

1

1 1
1 exp

=
  ∆

+ − −  
  

HS

c

n
n H

R T T

 
(1.10) 

 Although it cannot reproduce the transition with hysteresis, this model can predict the 

fact that by decreasing the dimension of the domains, the transition will be more gradual 

(Figure 1.13). This model involves the assumption of an intermolecular interaction, which 

favors the HS state, even if in the expression for the free energy no term is introduced to 

represent such interactions. 

 

Figure 1.13 Thermal variation of HS fraction, nHS, for different domain sizes (∆H=7KJ.mol
-1

 

and Tc=140K) [111]. 

1.7.4 Ising-like model 

 This model aims at providing a simple representation of the molecular states and 

intermolecular interactions. Starting with the model of Wajnflasz and Pick, the Ising–like 

model is adapted as a model with two different degenerate levels, each corresponding to a 

certain electronic configuration. If we consider that the molecules do not interact, the Ising 

type Hamiltonian of a system with two states, HS and LS, can be represented by the 

expression: 

1

ln

2
σ

=

∆ −
= ∑

N
B

i

i

k T g
H  (1.11) 

where Δ is the energy difference between the two states, N is the number of molecules that 

compose the system, kB is the Boltzmann's constant, T is the temperature of the system and 

iσ  is an operator associated to each molecule and that can take the value +1 when the 

molecule is in the HS state and the value -1 when the molecule is in the LS state. 

/
HS LS

g g g=  is the degeneracy ratio of the two states. 
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The spin fraction corresponding of the HS state is given by:  

1

2

σ+
=

HS
n  (1.12) 

The equilibrium temperature of the system for which 1/ 2
HS LS

n n= =  corresponding to a zero 

effective field is given by: 

1/2
ln

∆
=

B

T
k g

 (1.13) 

 Taking into account the expressions (1.10) and (1.13) we can say that the system is in 

the LS state for temperature values lower than the equilibrium temperature, 1/2T T< , and in the 

HS state for temperature values higher than the temperature of equilibrium, 1/2T T> . 

For a system of N interacting molecules, where the intensity of the interactions is being 

represented by the parameter value J, the system Hamiltonian has the following expression: 

1 ,

ln

2
σ σ σ

=

∆ −
= −∑ ∑

N
B

i i j

i i j

k T g
H J  (1.14) 

 In order to solve this system one usually uses the mean field approximation technique. 

This technique involves the representation of the sum of interactions experienced by a single 

solid molecule by a single field also known as a molecular field. 

 Statistical thermodynamics allows for calculating the partition function of the system 

taking into account the filling of energy levels and the magnetization change as a funtion of 

temperature. One can then find equations identical to those obtained in the model Slichter & 

Drickamer, including the emergence of a hysteresis loop for constant interaction 1/2/ >
B

J k T .  

 Using this model, Bousseksou et al. [113] reproduced a two step transition considering 

two anti-ferromagnetically coupled molecular networks and, a few years later, the effect of 

intramolecular vibrations have been also taken into account [114]. In 1999 Linares et al. [115] 

reproduced, for the first time, the hysteretic transition of a 1D system considering the long-

range interactions. Taking into account the long-range interactions, the Hamiltonian of the 

system can be written as: 

1 , 1

ln

2
σ σ σ σ σ

= < > =

∆ −
= − −∑ ∑ ∑

N N
B

i i j i

i i j i

k T g
H J G  (1.15) 

For a 1D system, the Ising-like model type can be easily applied. However, for 2D and 3D 

systems, where the number of molecules is high, no exact solution has been found. Thus, 

many numerical techniques have been instead applied such as Monte Carlo including 

Metropolis [116,117]. Monte Carlo Arrhenius [58,65,118], Monte Carlo entropic sampling 

[58,119-121] or Molecular Dynamics [122,123]. Using these techniques, the Ising-like model 

was used to study the 1D systems [62,124] 2D [117,125] and the 3D systems as well [59,63]. 

1.7.5 Atom-phonon coupling model 

 Introduced in 2001 by Nasser [126] this model aims at providing an insight into the 

physical origin of intermolecular interactions in 1D systems. In this model molecules are 

modeled as atoms interconnected to each other through springs with a spring constant that 

depends on the electronic state of the molecules. The force between two neighboring 

interacting atoms i and j has an associated elastic constant kij given by: 
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� LL
C λ= , if the atoms are in the LS state; 

� HHC ν= , if the atoms are in the HS state; 

� HL
C µ= ,

 
if an atom is in the LS state and other in HS state, 

 where λ µ ν> > . 

 For a system with N atoms, each atom being associated with a spin operator, which can 

take the value +1 or -1, depending of the electronic level in which it is found, the HS or the 

LS, the total Hamiltonian can be written as: 

= +
spin phonon

H H H  (1.16) 

where: 

1 2
σ

=

∆
=∑

N

spin i

i

H  (1.17) 

= +phonon c pH E E

 
(1.18) 

Ec and Ep are the potential and kinetic energies and can be written as: 

2

1 2=

=∑
N

i
c

i

p
E

m
 (1.19) 

( )
2

, 1 1

1

1

2
+ +

=

= −∑
N

p i i i i

i

E e u u

 
(1.20) 

where i
p is the momentum of the i

th
 atom, m is the atomic mass, i

u represents the 

displacement of the atom from its equilibrium position and , 1i i
e +  is the spring constant 

between the i molecule and molecule i+1 which can take one of the values λ, μ and ν, and can 

be expressed as: 

( ), 1 1 1

2 2

4 4 4

λ µ ν ν λ λ µ ν
σ σ σ σ+ + +

+ + − − +
= + + +i i i i i ie  (1.21) 

In this case, if a periodic system is considered, the potential energy, Ep  can be written as: 

( ) ( ) ( ) ( )
2 2 2 2

1 1 1 1 1

1 1 1

2 2

8 8 8

λ µ ν ν λ λ µ ν
σ σ σ+ − + + +

= = =

+ + − − + = − + − + − + −
 ∑ ∑ ∑

N N N

p i i i i i i i i i i i

i i i

E u u u u u u u u  (1.22) 

The Hamiltonian of the system becomes: 

( )
2

2

, 1 1 1

1 1 1

2

2 8

λ µ ν
σ σ σ+ + +

= = =

 + +
= − − + + − 

 
∑ ∑ ∑

N N N
i

i i i i i i i i

i i i

p
H h J u u

m
 (1.23) 

where: 

( ) ( )
2 2

1 1
2 8

ν λ
− +

∆ −  = − − − + −
 i i i i ih u u u u  (1.24) 

is the effective field acting on a spin in a Zeeman type interaction and the second term may be 

associated with a type of exchange interaction energy between two neighboring spins: 

( )
2

, 1 1

2

8

λ µ ν
+ +

− +
= −i i i iJ u u  (1.25) 

 From equation (1.22) it is observed that the Hamiltonian of the system consists of a 

classical Ising Hamiltonian and the Hamiltonian of the phonon. 
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 In 2004, a two steps transition was obtained from this model and in 2005 it was used to 

characterize the SCO in diluted systems of molecules [127]. 

1.7.6 Elastic models 

 Recently, a new class of cooperative SCO models has been developed to characterize 

the behavior of spin transition compounds namely the elastic model [128,129]. This model 

assumes that the molecules are connected together by a spring and as the transition from one 

state to another occurs, the molecule’s volume varies producing a force acting on the spring 

interconnecting neighboring molecules. This force will cause neighboring molecules to 

change their position. 

 The elastic Hamiltonian is given by the expression: 

( ) ( )
2 2

int int

,

, , ,
2 2

= + + +∑ ∑ ∑ ∑ra eri i
system i i ij i j i j

i i i i j

P p
H V r V X X r r

M m
 (1.26) 

where ( )int ra

i i
V r  is the intramolecular energy and is expressed as a function of the i

th 

molecule’s radius, pi is the momentum and m is the reduced mass. The intermolecular 

interaction between two molecules i and j is given by the term: ( )int , , ,er

ij i j i j
V X X r r  where 

( ),
i i i

X X Y=  are the coordinates of the center of the i
th

 molecule. ( ),
i X Y

P P P=  is the 

corresponding momentum and M is the mass of the molecule. 

1.7.6.1 Mechano-elastic model 

In this model the molecules are considered as being connected by elastic springs that are 

unstressed in the two spin states, HS and LS. When the state of a molecule transits from HS to 

LS, through a decrease in temperature, a force is generated that changes the position of its 

neighbors and then, progressively, the effect propagates to all the other molecules in the 

system [130]. Therefore, in the classical Hamiltonian (equation (1.14)) of a cooperative Ising-

like system the short-range interaction term is replaced by the elastic interaction potential 

between molecules [131]:   

2

,2
ij

i j

k
V xδ= ∑  (1.27) 

The transition probability for the HS-LS transition is given by the expression [129]: 

1
expi A i

HS LS

B

E p
P

k T

κ

τ
→

 −
= − 

 
 (1.28) 

where EA is the activation energy of the molecule for the HS-LS relaxation, and τ a constant 

for the time scale; the term i
pκ  expresses the energy difference under the pressure i

p  

between HS and LS states, where κ  is a parameter representing the size difference among the 

molecules. The expression of the local pressure i
p  can be written as: 

i ij

neighbour springs

p k xδ= ∑  (1.29) 

where the elongations 
ij

xδ  are taken positive for compressed springs and negative for 

elongated ones. 

For the LS-HS transition the probability is written as: 
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ln1
exp expi A iB

LS HS

B B

E pk T g
P

k T k T

κ

τ
→

   +∆ −
= − −   

   
 (1.30) 

At mechanical equilibrium the following condition must hold:  

0i

neighbour springs

k xδ =∑
��

 (1.31)

1.7.6.2 Electro-elastic model 

 In the framework of this model the spin transition is accompanied by changes in volume 

as well as deformations of the crystal lattice related to the properties of elastic interactions 

between molecules [132,133]. Thus, the electro-elastic model is constructed to include two 

contributions: 

(a) an electronic contribution taking into account the energy of the ligand field and the 

degeneration of the system (first term equation (1.32)); 

(b) a structural contribution, related to the elastic interaction between molecules (the last two 

terms of equation (1.32)). 

( ) ( )

( )

2

0

,

2

0

,

1
ln ,

2

' ,

B i ij i j

i i j

ik i k

i k

H k T g A r R

B r R

σ σ σ

σ σ

 = ∆ − + − + 

−  

∑ ∑

∑
 (1.32)

where � and � represent the elastic constants between the first peer nearest neighbors and 

second nearest neighbors relative to the (�, 	) site. The distance between two first nearest 

molecules is denote by 0

HH
R , 0

HL
R and 0

LL
R  in regards to the molecules state, HS-HS, HS-LS, 

LS-LS. In addition, considering that ( )0 0 0 / 2HL HH LL
R R R= +  the general expression of the 

equilibrium distance can be written as: 

( ) ( )0 0,
4

HL

i j i j

R
R R

δ
σ σ σ σ= + +  (1.33)

where: 

( )0 0

HH LL
R R Rδ = −  (1.34)

1.8 Monte Carlo methods  

 Simulation of physical processes is a challenge for scientists trying to understand the 

physical phenomena that occur inside the materials. Thus, besides some analytical methods 

which can solve exactly finite or infinite systems, several other methods, mainly numerical 

have been develloped. Monte Carlo methods are the most used methods by researchers in 

order to model probabilistic or stochastic systems whose analytical solutions are too 

complicated or impossible to be determined. Concerning SCO materials, the Monte Carlo 

methods are used in combination with certain models such as: Ising-like model, atom-phonon 

coupling (APC) model or mechano-elastic model. All these models are used by researchers to 

simulate the behavior of SCO materials when they are disturbed by an external perturbation 

such as: thermal or/and pressure variation, light irradiation, applied magnetic or electrical 

fields. 

 Recent investigations using Monte Carlo methods applied to an Ising-like model 

[107,113,134] have shown that the behavior of SCO materials is influenced by the lattice 

architecture of the system, the system’s size (or size of particles) [65,135]. Also, the role of 
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edge effect in 1D, 2D and 3D SCO systems have been analyzed, considering that the edge 

molecules are trapped in the HS states [62,63]. Considering the edge molecule as active 

molecules some important results have been reported in the recent years for 1D and 2D SCO 

network systems [64,136,137]. 

1.8.1 Monte Carlo Metropolis 

 This method introduced by Metropolis [138] was initially proposed for the specific case 

of a canonical ensemble but it has been adopted in other fields. The Metropolis algorithm 

consists in the following description: a system with a configuration Ci of spin operators and 

with energy Ei is shifted in the configuration Ci+1 with energy Ei+1 by changing a spin 

operator, k, from its initial value σk to -σk only if the following conditions are met: (i) the 

energy of the new configuration is lower than the previous one or (ii) in the oposite case, then 

a random number, R is generated, in the interval [0,1]; if the probability to move from the 

configuration Ci to configuration Ci+1, 
1( E )/k+− −= i i BE T

P e , is less that the value of R, the new 

configuration is accepted. Otherwise, the new configuration is refused and restarting from the 

same configuration Ci , the same steps are applied. This new configuration will be accepted or 

not depending on the fulfillment of the conditions specified above. 

This method has been used over the years in combination with main models that are used to 

describe the spin transition behavior [116,139,140].  

1.8.2 Monte Carlo entropic sampling 

 The Monte Carlo Entropic Sampling (MCES) can be used when the Hamiltonian of the 

system cannot be solved exactly via the transfer matrix method or when the mean-field 

approximation method is not appropriate enough for researchers’ investigations. The MCES 

in combination with the Ising-like model is used to obtain the table that contains the 

macroscopic variables, m and s, and their density, d(m,s), m and s are defined as: 

1 ,

σ σ σ
=

= =∑ ∑
N

i i j

i i j

m and s  (1.35) 

 The principle of MCES, described by the Shteto et al. [119,120] is the follow: in order 

to obtain a desired distribution P, it is necessary to introduce an appropriate distribution as a 

bias in the detailed balance equation expressed as:  

( ) ( )→ = →
i j

PW i j PW j i  (1.36) 

The biasing probability was chosen as the inverse of the desired restricted density of states. 

1

( , )
i

i i

P
d m s

∝  (1.37) 

In this way, configurations with weakly degenerate macrostates are favored and those with 

highly degenerate states are damped. In this case, the balance equation (1.36) can be written 

as: 

( , )( )

(j ) ( , )

j i i

i j j

P d m sW i j

W i P d m s

→
= =

→
 (1.38) 

 Because in the first Monte Carlo step the density of the state d(m,s) is unknown we put 

all d(m,s) equal to 1. So, after iteration k the density will be dk(m,s). Then, using dk(m,s) as a 

bias, a MC sampling is run; it is termed a ‘Monte Carlo stage’ and yields a histogram of the 

frequency of the macrostates: Hk(m,s): 
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( ) ( )
( )
1

, ,  
,

∝k

k

H m s d m s
d m s

 (1.39) 

The resulting restricted density of states is obtained after applying a correction for the bias: 

( ) ( ) ( )1 ,   ,   ,+ ∝
k k k

d m s d m s H m s  (1.40) 

From the table of the d(m,s) thus built from the (m, s) states, the partition function can be 

calculated using the following expression: 

( , )

( , ) exp( ( ))β= − − −∑
m s

Z d m s hm Js  (1.41) 

from which all the thermodynamic properties of the system can be analytically derived. 

So, in the evolution of the HS fraction given by equation (1.12) the average magnetization can 

be written as: 

1,

1,

1
( ) exp ( )

1
( ) exp ( )

i
i i f i i

i NL B

i i f i i

i NL B

m
d m s h m Js

N k T

d m s h m Js
k T

σ
=

=

 
− − − 
 < >=

 
− − − 
 

∑

∑
 (1.42) 

where NL is the number of distinct configuration of states <m,s> and d(m,s) is the number of 

configuration for a given set of values. 

1.9 Conclusions 

 Through of this chapter we wanted to explain the spin transition phenomenon and are 

presented the main models used to model the behaviors of these compounds. Although ST 

phenomenon is purely electronic nature, the behavior of an ensemble of molecules in the solid 

phase depends largely on the nature of intermolecular interactions. The recently studies show 

that the spin interactions are of two types: short-range interactions and long-range 

interactions. The short-range interactions are of electronic nature and/or elastic between two 

neighboring molecules. These interactions depend of the distance between molecules, and 

their network orientation. The long-range interactions are due to internal pressure created by 

changing the volume of molecules in crystal. Despite numerous theoretical studies on this 

topic, the spin interaction issue in spin transition is not understood completely. Until now, 

various models have been proposed, but the most used are those proposed by Wajnflasz, 

Slichter and Drickamer sister Seki. The cooperativity origin is, in turn, usually attributed to 

elastic interactions. Various stimuli can be used to induce the spin transition. The most used 

stimuli to induce the transition are the variation of temperature and application of external 

pressure. In the next chapter are presented some behaviors of SCO compounds under action of 

temperature or pressure variation and their applications as sensors. 
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       (a)         (b) 

Figure 2.3 The thermal variation of magnetic proprieties of the complexes (a) [Fe(Cn-trz)3](4-

MeC6H4SO3)2*H2O (for the cases 1 - n=8, 2 - n=10 and 3 - n=12) and (b) [Fe(Cn-trz)3](4-

MeC6H4SO3)2 - n=12 [10]. 

 Another interesting compound, exhibiting a great color contrast during the spin state 

switching, was synthesized by Zhao et al. [11]. This compound has the great advantage of an 

increased stability over time (Figure 2.4a). The transition cycles in Figure 2.4a were measured 

on [Fe(Htrz)2(trz)](BF4) (Htrz=1,2,4-triazole) (SCO-2) particles obtained by the use of the 

"reverse micelle method”. 

            

                    

         (a)                        (b) 

Figure 2.4 (a) Optical reflectivity recorded in function of temperature variation for the SCO 

compound [Fe(Htrz)2(trz)](BF4); (b) The colors in the low spin state (left) and the high spin 

state (right) for the SCO compound [Fe(Htrz)2(trz)](BF4) embedded in the pores of 

mesostructured silica MCM-41. 

 The behavior of compounds showing a gradual transition without hysteresis was 

attributed to weak cooperativity [12] or by diluting the compounds [13]. Figure 2.5 shows 

examples of SCO compounds exhibiting transitions of this kind. 
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Figure 2.5 (a) Magnetic moment 

eff
µ , per Fe, versus temperature for {[Fe(pypz)2(NCSe)2]2(

µ -OH2)(H2O)2}.H2O.MeOH (filled squares), and for its desolvated product (filled  circles) 

[14]; (b) .
M

T vs Tχ  for [Fe(phtptrz)3]I2 - black, [Fe(phtptrz)3](ReO4)2•CH3OH - green and 

[Fe(phtptrz)3]TaF7•6H2O - red [12]. 

 In Figure 2.6a) is presented a proof-of-concept experiment where a gold microwire (L = 

80μm, l = 1μm, h = 5 nm) covered by a thin layer of SCO compound [Fe
II
 (hptrz)3](Ots)2 

doped with Rhodamine 110 is heated by Joule effect [15]. The temperature distribution along 

the wire is presented in Figure 2.6b). The scheme of the device is shown in Figure 2.6 c). The 

temperature variation is a consequence of the luminescence intensity change. By increasing 

the temperature the spin state of the compound that cover the gold microwire will change 

locally from LS to HS state and the luminescence intensity will increase.  

 

Figure 2.6 Example of sensor using SCO compounds [15] 

2.3 Pressure sensors 

 The pressure effect on a spin transition compound is illustrated in Figure 2.7. It is well 

known that the molecule’s volume in its LS state is smaller than in the HS state. Therefore the 

application of external pressure promotes the LS state. By applying an external pressure the 

energy gap increases by p V∆  as the metal-ligand distances decrease thus lowering the value 

of the activation energy Ea. V∆ is the molecular volume variation during the spin transition 

and p is the external applied pressure. 
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Figure 2.7 Schematic representation of the pressure influence on the LS and HS potential 

wells of an Fe(II) SCO compound [8].  

As previous mentioned, the pressure dependence of the energy gap is given by: 

( ) ( ), , 0T p T p p V∆ = ∆ = + ∆  (2.1)

 Investigating the [Fe(hyptrz)3](4-chlorobenzenesulfonate)2•H2O compound, Garcia et 

al. [16] observed that, by increasing the applied pressure, the transition temperatures increases 

and the width of the hysteresis loop decreases and disappears around 4.1 kbars of pressure. At 

pressures above 5 kbar the hysteresis loop reappears with a constant width value of 6K (figure 

2.8). 

 

 

Figure 2.8 The high spin fraction as a function of temperature for [Fe(hyptrz)3](4-chloroben-

zenesulfonate)2•H2O at different pressures (● P=1 bar, ■ P=4.1 kbar, ▲ P=5 kbar, ♦ P=5.3 

kbar, ∆ P=5.9 kbar,○ P=1 bar after releasing the pressure) [16]  
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 This behavior was associated to short range interactions due to the presence of triazole 

molecules which connect the Fe (II) ions. Another similar behavior was reported by Bruns-

Yilmaz [17]. In this case the transition occurs in two steps. Much the same as in the previous 

case, the transition temperatures are shifted towards higher values and the width of the 

hysteresis loop decreases and even disappears (the second stage hysteresis loop) up to a 

pressure of 0.4 GPa. It can be seen that, at a pressure of 0.73 GPa, the transition occurs in two 

steps with hysteresis (Figure 2.9), reappearing on the second stage of the transition hysteresis 

loop. 

 

Figure 2.9 The high spin fraction as a function of temperature for [Fe(5-NO2-sal-

N(1,4,7,10))] at different pressures. 

 In 2003 Bousseksou et al. [18] showed that a pressure pulse applied on SCO compound 

Fe(phen)2(NCS)2 reveal properties symmetrical of a magnetic pulse applied (figure 2.10). 

 

Figure 2.10 The pressure pulse effect on the high spin fraction in Fe(phen)2(NCS)2 [18] 
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 Studies at constant temperatures and varying the pressure applied has been also 

recorded [19] (figure 2.11).  

 

Figure 2.11 Several hysteresis loops recorded at different pressures and temperatures, 

respectively for [Fe(PM-BiA)2(NCS)2] [19] 

 Up until a few years ago the SCO compounds exhibiting a thermal hysteretic behavior 

were intensely studied due to potential application as memory. In the recent years the SCO 

compounds with gradual and linear transition drew attention of several research groups. This 

type of behavior accompanied by color changes of the compound opened a new area of 

implementation, namely the sensors. In 2012 Linares et al. [20] proposed a concept of sensor 

based on SCO compound. The operating principle is shown in Figure 2.12. 

 

Figure 2.12 The operating principle of a SCO sensor with optical reflectivity detection [20]. 

 This type of sensor can be used for temperature measurement at a well-known pressure 

or for pressure measurement at constant temperature. It is important to mention that the 

measurement error is estimated to c.a 20K/kbar rate variation of T vs P [21]. Thus, when the 

sensor is used for temperature measurement the 1bar variation of pressure induce an error of 

20 mK. On the other hand, the pressure measuring can be done with an error of 50 bars at 

variation of temperature with 1 K. The contrast of the color change of the material plays also 

an important role in the sensitivity and resolution of measurement process. Using the 

advantages of these materials such as change in color, repeatability, time responding and the 
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possibility to be controlled at molecular level, such kind of materials are being 

commercialized for various applications where a wide selection of colors (Figure 2.13) [22] is 

necessary. 

 

Figure 2.13 Types of pigments and their applications [22]. 

2.4 Gas sensors 

 Because the transition can also be chemically induced, certain compounds can be used 

as chemical sensors (figure 2.14). Compounds such as Fe(pyrazine)[Ni
II
(CN)4], 

Fe(pyrazine)[Pd
II
(CN)4] or Fe(pyrazine)[Pt

II
(CN)4], in the HS state display a yellow color 

which may be stabilized in a hydrosillic solvent. In the LS state, these compounds exhibit a 

reddish-brown color and may be stabilized in a CS2 solvent. 

 

 

Figure 2.14 a) The temperature dependence of SCO compound Fe(pz)[Pt(CN)4]; b) the time 

dependence of HS fraction under the action of benzene (yellow) CS2 (purple) at 293K [23] 
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Figure 2.15 The thermal and chemical behavior of Fe(pz)[Pt(CN)4] [23] 

 As shown in Figure 2.15 the transition from the LS state to the HS state can be achieved 

both thermally and chemically. From an initial LS state, the isothermal absorption of benzene 

by the compound triggers the transition to the HS state. By adsorption of benzene the volume 

increase by a very low step P/P0 value of ca. 0.05 and the complete transition from the LS 

state to the HS state was observed for P/P0=0.19. The HS state is then maintained even after 

the benzene is eliminated under vacuum. By cooling, the system can return to the initial LS 

state. If the compound is in the HS state and absorbs CS2 the transition from the HS state to 

the LS state occurs due of framework contraction (hardened). After CS2 is removed in 

vacuum the compound retains its LS state and, by heating, it can switch back to the HS state 

[23].  

 In this context, for use the SCO materials as sensors, for to help to choose the SCO 

compound for the desired application, the next chapter is dedicated to theoretical studies 

regarding to the role of cooperativity, edge and architecture effect, in thermal and pressure 

behaviors of these interesting materials. 
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3. Cooperativity tuning in spin crossover nanostructures 

via matrix and architecture effect  

3.1.  Introduction 

 In the past years SCO compounds was intensely studied in order to understand the 
influence of physical and chemical parameters on the cooperativity in molecular SCO 
compounds. Thus, it has been shown that both short and long range interactions [1] are 
present in these molecular materials and play a major role on the behavior of SCO compounds 
subjected to various external stimuli such as temperature and pressure [2-5], light irradiation 
[6-8] or magnetic field. More recently, it has been shown that the cooperativity is also 
strongly affected by the system’s size [9,10], the architecture [11,12] or the size of the 
molecules [13-15]. Up to now, several types of spin transitions, have been reported in the 
literature, one step transition [16,17] or the stepwise transition with two [18] or three steps 
[19-21], with equilibrium temperature centered below, above or at room temperature. These 
transitions can occur with or without hysteresis. At the origin of multi-steps transition is the 
presence of both the antiferromagnetic-like short range (J) and ferromagnetic-like long range 
(G) interactions [1,22]. 

 The theoretical studies have given a great importance to the simulation of the thermal 
behavior of nano-patterned molecular SCO systems. Several approaches have been used by 
various research groups such as mechano-elastic [23-25], atom-phonon coupling [26-30], 
Ising like model [31-33] or first order reversal curves (FORC) [13,34]. However, only few 
experimental studies have been made at nanoscopic scale due to the low signal that could be 
detected by classical techniques, such as in magnetic or optical measurements. Nevertheless, 
in the last years it has been shown that a stylish way to investigate the thermal behavior of 
SCO systems at nanoscopic scale is by using electrical measurements [7,35-37] or surface 
plasmons detection [38]. 

 The role of cooperativity in SCO materials has attracted great interest from unusual 
observations revealed experimentally [1-3,19,20,31,39-50]. The origin of cooperativity is 
assigned to elastic interactions between neighboring switching molecules and as a function of 
the interaction strength among molecules and/or of the lattice architecture, the spin transition 
(ST) curve can display a variety of shapes which can be gradual, abrupt, or stepwise [51]. 
Increasing the strength of these interactions, the cooperative phenomena between the spin 
state changing molecules can lead to a hysteretic behavior. In the last years a special attention 
has been paid to the two-step behavior which was attributed to a synergistic effect between 
intra-molecular interactions favoring the mixed-spin state and intermolecular interactions 
favoring like-spin species domains. In the last five years, several coordination complexes 
have been shown to present a ST occurring in three steps [19,20,41]. Although the origin of 
the two-step behavior is rather clear, the origin of the three-step behavior is far from being 
fully understood. However, there is clear evidence that this stepwise behavior should be 
governed by both matrix (i.e. surface effect) and long-range interaction effects [52,53].  

 In the first part of this chapter, a theoretical study concerning the influence of an elastic 
environment on a SCO system is presented. By reducing the particle’s size, the surface 
contribution became more important comparing with the bulk behaviour. Moreover, the 
fabrication of a temperature and pressure sensor with optical detection demands the 
integration of the SCO complexes in a matrix. This make very important to know how SCO 
behavior is influenced by the interaction of SCO molecules with their environment. Thus, the 
edge effect might play an important role on the spin crossover behavior. Indeed, it has been 
shown that the edge effect could led through a multi-step behavior. This kind of behavior has 
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been experimentally observed in 2D and 3D SCO systems [19,20,41] but not yet for 1D 
systems. We used Ising-like model [31,49,50] in order to simulate the edge effect in SCO 
systems. These studies are very important for engineers in the fabrication process of 
temperature and pressure sensors.  

In the second part of the chapter is analyzed the architecture effect of a SCO system. 

 The Ising-like model with short-range (J) and long-range interactions (G) [31], 
presented in the first chapter, has been used in several studies to reproduce different 
experimental behaviors such as a one-step transition [1,31,42] or a two-step [43] transition, 
with or without hysteresis. The two steps SCO curve was attributed to the interplay between 
an antiferromagnetic (AF) short-range interaction and a ferromagnetic (F) long-range 
interaction. Example of two-steps transition has been also reported as a consequence of 
binuclear molecules [48] or two-sub-lattices [49,54]. 

3.2.  Matrix effect on spin crossover nanoparticles on the origin of multi-

step spin transition behavior in 1D nanoparticles 

3.2.1. The Ising-like model with edge effect 

 It is known that the SCO compounds that exhibit hysteresis can be used as memories 
and those whose transition is gradual can be used as sensors. Thus, compounds with gradual 
transition can be obtained by synthesis or may be diluted compounds that exhibit transition 
with hysteresis. By dilution the system cooperativity is reduced and can appear new 
interactions if the compounds are mixed for example with paints. In order to take into account 
these new interactions (the matrix effect), we have added an additional interaction parameter 
to the Ising-like Hamiltonian [31] which accounts for the SCO molecules behavior within the 
environment (matrix effect), that is termed, the matrix interaction L. This interaction is 
assumed to act on the molecules localized at both ends of the 1D SCO system. In this case, 
the system’s Hamiltonian can be written as follows:  

1 1 , { 1; }

ln
2

σ σ σ σ σ σ
= = = =

∆ −
= − < > − −∑ ∑ ∑ ∑

N N
B

i i i j i

i i i j i i N

k T g
H G J L , (3.1) 

where the first term represents the temperature dependent field, the second and third terms are 
describing the long- and short-range interactions, respectively. The last term describes the 
interaction of the SCO system with the matrix. Δ is the energy gap between the high-spin 
(HS) and low-spin (LS) states, and g is the degeneracy ratio of the two states. 
Since the ratio of HS state nHS as a function of the pseudo-spin variable can be expressed by: 

( )1 / 2σ= +
HS

n  (3.2) 

and appears self-dependent of <σ>, we propose an analytical treatment using a new 
expression of nHS based on the bisection technique. 
Thus, the system’s Hamiltonian could be expressed as a function of the dimensionless 
macroscopic variables: 

1,

σ
=

= ∑ j

j N

m  (3.3)

,
σ σ

< >
=∑ i ji j

s   and (3.4)

1σ σ=< + >
N

c  (3.5)
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(herein 1σ  and N
σ  represent the spin operator associated to the first and the last molecule in 

the molecular chain): 

ln
2

σ
∆ − 

= − − − 
 

B
k T g

H G m Js Lc  (3.6)

The canonical expression of <σ> can be constructed in terms of the above dimensionless 
quantities: 

1,

1,

1
( )exp ( )

1
( ) exp ( )

j

j j j f j j j

j NL B

j j j f j j j

j NL B

m
d m s c h m Js Lc

N k T

d m s c h m Js Lc
k T

σ
=

=

 
− − − − 
 

< >=
 

− − − − 
 

∑

∑

 
(3.7)

where d(m,s,c) is the number of configurations for a given set of values, NL is the number of 
distinct configurations of states <m,s,c> and where: 

ln
2

σ
∆ − 

= − − 
 

B
f

k T g
h G  (3.8)

Since d(m,s,c) is the degeneracy of each state <m,s,c>, we are able to generate all the system 
configurations building by this way, the states distributions of the molecular system. 

 Upon considering open boundary conditions and following the numerical calculation of 
equation (3.7) from the bisection technique, the curves from Figures 3.1 and 3.2 were 
obtained where nHS is given by equation (3.2). Moreover we discuss in the rest of the study 
some simulations regarding the behavior of a 1D system using the values of parameters Δ, 
ln(g) in the range of those of SCO compounds. 

 In the numerical studies [42,55] it was shown that a stepwise behavior could be 
obtained in 3D SCO systems by taking into account negative short-range interactions (anti-
ferromagnetic-like interactions) and positive long-range interactions (ferromagnetic-like 
interactions). Following similar conditions, it is further considered in this work, that the 
coupling between the matrix and the edge molecules is ferromagnetic-like (positive). 

3.2.2. Results and discussions 

 The results on the influence of the SCO-matrix interaction strength are reported in 
figure 3.1. By increasing the value of L, the 1D SCO system goes from a complete two-steps 
behavior (L/kB = 90 K, with kB the Boltzmann constant) to a complete three-steps behavior for 
an interaction strength between the matrix and the boundary molecules given by L/kB = 147 
K. Moreover, an incomplete two-steps transition is obtained for higher values of L/kB = 180 
K. These results are to be compared to the incomplete behavior induced by the SCO-matrix 
interaction strength that were recently reported by Stoleriu et al. [10] in the framework of the 
mechano-elastic model. In their paper, it was concluded that the nanoparticle system behavior 
is affected drastically by the matrix environment upon decreasing the nanoparticles system’s 
size. Atitoaie et al. [56] and Muraoka et al. [57] have also studied the effect of the 
environment on the SCO behavior. 
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Figure 3.1 Thermal evolution of the HS molar fraction, nHS, in a 1D SCO system embedded 
into a matrix for different matrix interaction strength: Square (L/kB = 90 K), Circle (L/kB = 
147 K) and Triangle (L/kB = 180 K). The parameter values are: N = 16 molecules, Δ/kB = 240 
K, ln(g) = 9.5, G/kB = 120 K, and J/kB = -43 K. 

 In the past years, particular attention was paid to the influence of size effect in the frame 
of the nano-structuration of SCO complexes [58]. Since the hysteretic behavior of the SCO 
systems is strongly affected by the decrease in the number of molecules, many studies were 
reported on the critical size, under which the SCO system losses its hysteretic properties. 
Rotaru et al. [13] studied a series of nanoparticles of the surfacted [Fe(NH2trz)3]Br2•3H2O 
(NH2trz = 4-amino-1,2,4-triazole) SCO complex, with various mean sizes (30-110nm) using 
first-order reversal curves (FORC). They have shown that the critical size is around 45-50nm. 
On the other hand,  SCO systems with a critical size below 10 nm have been also reported 
[59]. The size effect in SCO systems exhibiting a three-step behavior has however not been 
studied so far. For this reason, we present in the following, a study on the size influence on 
1D SCO system exhibiting a stepwise thermal behavior.  

 In figure 3.2, the simulated thermal behavior of the HS fraction is shown for various 
numbers of molecules. We show that, when the SCO system size consists of a high number of 
interacting molecules, the thermal behavior of the 1D SCO system, depending on the matrix 
interaction strength, can exhibit both two-step and three-step ST and both complete or 
incomplete transition. However, when the system’s size is decreasing, the coupling between 
the edge molecules with the matrix becomes more important and the synergistic effect 
between intra-molecular interactions favors the mixed-spin state configuration. Thus, with the 
decrease of the system’s size, the SCO particles embedded into a matrix can exhibit even a 
four-step behavior. As it was expected, the decrease of the system’s size also affects the 
increase of the residual HS fraction, for high values of the matrix interaction parameter. 
Another feature that was observed with the decrease of the number of molecules, is a shift of 
the equilibrium temperature T1/2 to low temperatures, in good agreement with the 
experimental data reported in [9]. 

 Because in our model the edge atoms are not blocked in the HS state, it is difficult to 
give an evolution of T1/2 as a function of all the system’s parameters (i.e. Δ, ln(g), J, G and L). 
A particular aspect which should be noted here is the fact that different cooperative effects at 
small nanoparticles sizes were obtained, in good agreement with the results reported by 
Tokarev et al. [15] for of [Fe(NH2trz)3](tosylate)2 nanoparticles of 3-4nm in size. 
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Figure 3.2 Evolution of the HS molar fraction, nHS, as a function of temperature, for various 
numbers of molecules: (a) N=6 molecules, (b) N=10 molecules, (c) N=20 molecules, (d) 
N=38 molecules for different polymeric-interactions strength: Square (L/kB = 90 K), Circle 
(L/kB = 147 K) and Triangle (L/kB = 180 K). The computational parameters are: Δ/kB = 240 
K, ln(g) = 9.5, G/kB = 120 K, and J/kB = -43 K. 

 In figure 3.3 we show the case where L as well as J, the short range interaction are 0, 
together with the case with L/kB = 147 K and J/kB = -43 K. It is clear from this figure that the 
multi-steps hysteresis transition originates from the interaction of the border SCO molecules 
with the local environment together with an antiferromagnetic-type short range interaction. 

 The value of the parameter L, which is a “long-range interaction” between the matrix 
and the SCO at the surface, is of the same order with the long-range interaction parameter G. 
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Figure 3.3 Evolution of the HS molar fraction nHS as a function of temperature, for the case: 
(Circle) (L/kB = 147 K, J/kB = -43 K) and (Triangle) (L/kB = 0 K, J/kB = 0 K). The 
computational parameters are: N=16, Δ/kB = 240 K, ln(g) = 9.5 and G/kB = 120 K.  
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 The role of the long-range (G), as well as the short-range interaction, on the thermal 
behavior are presented in figure 3.4 and figure 3.5 respectively. For a high value of the long-
range interaction, three-step hysteretic behavior can be reproduced, however the hysteresis 
disappears, as we expected, for small values of the long-range interaction. 
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Figure 3.4 Evolution of molecules in the HS state, nHS, as a function of temperature, for a 1D 
system N= 16 molecules, for different long range-interactions strength: G/kB = 40 K 
(triangle), G/kB = 80 K (circles), G/kB = 120 K (star) The parameter values are Δ/kB = 240 K, 
ln(g) = 9.5, J/kB = -43 K, and L/kB = 147 K. 

 The short-range interaction strength plays an important role on the stepwise behavior. 
Thus, when the short-range interaction strength dominates the other two interactions 
parameters, i.e. long-range and the matrix interaction parameters, the stepwise behavior is 
more pronounced. For a small value of short-range interaction, the stepwise behavior can be 
masked by a macroscopic one-step behavior. 
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Figure 3.5 Evolution of molecules in the HS state, nHS, as a function of temperature, for a 1D 
system N= 16 molecules, for different long short-interactions strength: J/kB = -43 K (triangle), 
J/kB = -30 K (circle) and J/kB = -20 K (star). The parameter values are Δ/kB = 240 K, ln(g) = 
9.5, G/kB = 120 K, and L/kB = 147 K. 
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3.3.  Matrix and size effects on the appearance of the thermal hysteresis in 

2D spin crossover nanoparticles. 
 

 This study aims at addressing the investigations on SC nanoparticles on which an 
extensive work has been devoted this last decade, both from the chemical point of view by 
synthesizing new core-shell systems [60-62] and from the theoretical side, in which some 
attempts to explain the interplay between the matrix and the SCO properties [42,57] have 
been developed.  

 Here, we consider this problem in the frame of the Ising-like model in which we include 
the effect of the environment on the SC nanoparticles and we study its impact on the 
macroscopic thermal properties of the system. 

3.3.1. Results and discussions 

 Adapting the Hamiltonian expressed in equation (3.1) to a 2D system type the new 
Hamiltonian can be expressed as: 

1 1 , { }

ln

2
σ σ σ σ σ σ

= = =

∆ −
= − < > − −∑ ∑ ∑ ∑

N N
B

i i i j i

i i i j i edge molecules

k T g
H G J L  (3.9)

 The molecules situated at the surface of the nanoparticle can be considered to be at the 
interface between the nanoparticle and its immediate environment (matrix, air, …) and 
therefore, it is legitimate to consider that they have specific properties. figure 3.6 illustrates 
the thermal-dependence of the HS fraction for an isolated SC nanoparticle having a 
homogeneous and constant ligand field on all sites including those located at the surface. 
Obviously, this situation corresponds to the case where L=0 in Hamiltonian given by equation 
(3.9).  

 The Hamiltonian (equation (3.9)) was exactly solved in the canonical approach, using 
parameter values chosen from typical data in spin-crossover literature, such as, ∆/kB=840K, 
J/kB=10K, G/kB=115K, ln(g)=6.9 (leading to a molar entropy change ΔS ≈ 56 J.K-1.mol-1 ), 
except for L which is a variable parameter. 
 This study is carried out for several lattice sizes, containing a number N = Nx x Ny of 
molecules. The results of figure 3.6. show that, in all cases, a first-order transition is observed 
whose thermal hysteresis loop increases in width with the lattice size. As it was expected, the 

equilibrium temperature 1/2 121.7
lnB

T K
k g

∆
= =  remains size-independent. 

 Figures 3.7 displays the associated phase diagram ∆/kB as a function of T for two values 
of the size, N=30 (5x6) and N=16 (4x4). Let’s consider the case N=30. For a compound with 
∆/kB higher than the critical ligand field value, ∆C/kB=997K, the spin transition from the LS 
state to the HS state occurs gradually, i.e. without thermal hysteresis. It is worth to notice that 
if for some reason (like, the interaction of the SC nanoparticle with some surrounding shell) 
the average value of ∆/kB decreases to the extent that ∆/kB becomes smaller than the critical 
value ∆C/kB, then the thermal hysteresis may not appear. 
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Figure 3.6 Simulated thermal dependence of the HS fraction for 2D SCO system for three 
numbers of molecules, showing the dependence of the thermal hysteresis on size. Parameters 
values, used in calculations, are: ∆/kB=840K, J/kB=10K, G/kB=115K, L/kB=0K, ln(g)=6.9. 
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Figure 3.7 Phase diagram in T1/2-∆ coordinates for an isolated SC nanoparticle of size (a) 
N=30 and (b) N=16, leading to the respective critical ligand field values ∆C/kB=997K and 
979K. The parameter values are the same as those of figure 3.6. 

 We have made extensive simulations of thermal dependences of the HS fraction for 
different ligand field values and various nanoparticle sizes. For each size, we determined the 
critical ligand field above which the first-order spin transition vanishes. The results are 
summarized in figure 3.8, where we represent the size dependence of these critical ∆/kB-
values. It is important to notice that  the critical value of the energy gap increases with N till 
saturation, which occurs for ∆C/kB ~1000K, corresponding  more or less to a ∆C/kB value at 
the thermodynamic limit. 
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Figure 3.8 Size-dependence of the critical ligand field showing a monotonous increase and a 
saturation indicating the proximity of the thermodynamic limit. The parameter values are the 
same as those of figure 3.6. 

 In the second part of this section, the problem of a 2D SC nanoparticle under the 
influence of a matrix or a shell was explored. In this case, the parameter L in equation (3.9), 
accounting for the existence of a specific ligand field of the edge atoms, becomes significant. 
The thermal behavior of a 2D SC system including surface effects is reported in figure 3.9, for 
various value of the system’s size. We observe that, contrary to the case of an isolated 
nanoparticle (see figure 3.6), now the transition temperature T1/2 shifts to higher temperatures 
with the nanoparticle size, while concomitantly the width of the thermal hysteresis shows a 
very unusual trend, since it increases when the nanoparticle size decreases. One of the 
important conclusions arising from these results is, as a result of surface effects, the 
emergence of the first-order transition at small sizes, which was absent at bigger sizes. This 
surface-driven first-order transition, is a result which is very original, and to the best of our 
knowledge it was never reported in the theoretical literature. The phase diagram giving the 
size-dependence of the critical ligand-field, ∆C/kB(N), is presented in figure 3.10. Now, 
∆C/kB(N) is an increasing function of the size, a behavior which clearly contrasts with the case 
of the isolated nanoparticle, as given in figure 3.8. 
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Figure 3.9 Simulated thermal dependence of the HS fraction for 2D SCO nanoparticle 
including surface effects, for three increasing numbers of molecules. Remark the behavior of 
the thermal hysteresis width and equilibrium temperature with size. The parameter values are 
the same as those of figure 3.6, except for L/kB=120K. 



Chapter 3. Cooperativity tuning in spin crossover nanostructures via matrix and architecture effect 
 

56 

 

8 12 16 20 24 28 32

850

900

950

1000

1050

1100

 

 

∆
C
/k

B

N  
Figure 3.10 Size-dependence of the critical value of the energy gap as function of the number 
of molecules for a 2D SC system embedded into a matrix. The computation parameters are 
the same as those of figure 3.9. 
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Figure 3.11 Thermal evolution of the high spin molar fraction, nHS, for a 2D system 
embedded into a matrix for the sizes: (a) N=9 (3x3), (b) N=16 (4x4), (c) N=25 (5x5) and (d) 
N=36 (6x6). The parameter values are: ∆/kB=840K, J/kB=10K, G/kB=115K, L/kB=120K and 
ln(g)=6.9. 

 To disentangle the surface and the bulk contributions in the thermal dependence of the 
total HS fraction of figure 3.9, we have calculated the thermal evolution of the HS fraction 
corresponding to each of them, for various sizes, that we illustrate in figure 3.11. It is clearly 
shown in this figure that the thermal dependence of the surface (green curve) and bulk (blue 
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curve) contributions are dramatically influenced by the ratio of the numbers of edge/bulk 
(surface/volume in 3D) molecules. Thus, for the first case (figure 3.11a) for which the ratio is 
8:1, meaning that that the surface is dominant, the thermal behavior of the system is mainly 
governed by that of the edge molecule. The expected transition temperature 

( )1/2

2
87

lnB

L
T surface K

k g

∆ −
= ≈  is significantly different from that of the bulk system, given by 

( )1/2 121.7
lnB

T bulk K
k g

∆
= ≈  and is in excellent agreement with the simulation. The 

influence of edge molecules on the global behavior of the system (red curve), weakens as the 
system size increases, which is confirmed by the shift of the transition temperature towards 
that of the bulk material. However, despite these simple considerations, the thermal behavior 
dependence on the bulk and the edge HS fractions is quite complex (see the shapes of the blue 
curves), due to their interplay and a complete description will be developed elsewhere.  

3.4.  Simulation of multi-steps thermal transition in 2D SCO 

nanoparticles 

 The surface interaction parameter is assumed to act on the edge molecules of the 
system, which are represented in blue color in figure 3.12 where a 2D such system is 
illustrated. 

 

Figure 3.12 Schematic representation of a 2D SCO system with 25 molecules (5x5). Blue full 
circles represent the edge molecules and red full circles represent the inner molecules. 

3.4.1. Results and discussions 

 Keeping the same signs for the short and long range interactions as it was reported in 
[22,35] and applying in the numerical calculation of equation (3.7), the bisection technique to 
a system of 25 molecules (5x5) with 16 edge molecules, the stepwise thermal behavior was 
plotted as shown in the figure 3.13. The high spin fraction, nHS, was obtained from equation 
(3.2)) We have considered an open boundary condition for the matrix system. 

 From figure 3.13 we can see that a four steps hysteresis transition was obtained. To 
understand the role of a negative short range interaction that is responsible for a multi-steps 
transition [22,55] and the role of the interaction parameter between the edge molecules and 
the environment we have also performed calculations that gave results reported in figure 3.14. 
The behavior of the system when both parameters are 0 is plotted in figure 3.14 (a). In figure 
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3.14 (b) and 3.14 (c) are presented the evolution of the HS fraction when the short range 
interaction parameters (in figure 3.14 (b)) and the interaction parameter with environment (in 
figure 3.14 (c)) are 0, respectively. 
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Figure 3.13 The evolution of the high spin fraction, nHS, of all system molecules. The 
computational parameters are: N=25, ∆/kB=320 K, J/kB=-29 K, G/kB=120 K, L/kB=107 K, 
ln(g)=9.1. 
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Figure 3.14 Thermal evolution of the HS molar fraction, nHS, in a 2D SCO system embedded 
into a matrix for the case: a) J/kB=0 and L/kB=0, b) J/kB=0 and L=/kB=107 K, c) J/kB=-29 K 
and L/kB=0 K. The computational parameters are: N=25 (5x5), ∆/kB=320 K, G/kB=120 K, 
ln(g)=9.1. 
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 It is clear from these two figures that both short-range interactions and the interaction 
between edge SCO molecules and its local environment can trigger the multi-step hysteresis 
transition. 

 The size effect on the thermal behavior of a 2D SCO system embedded into a matrix 
has also been studied. As can be seen from figure 3.15, by decreasing the system’s size, the 
ratio between edge and inner molecules is higher and the influence of interaction between the 
edge SCO molecules with environment becomes more important than the influence of the 
inner SCO molecules on the thermal behavior of the system. For N=9, for example, no multi-
steps occurs for the inner molecules whereas for N=36, a stepwise transition from LS to HS 
occurs. 
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Figure 3.15 Thermal evolution of the HS fraction for different system’s size: (a) N=36 (6x6), 
(b) N=25 (5x5), (d) N=9 (3x3). The computational parameters are: ∆/kB=320 K, J/kB= -29 K, 
G/kB=120 K, L/kB=107 K, ln(g)=9.1. 
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3.5.  Analysis of edge effect in 3D systems 

3.5.1. Results and discussions 

 In this study, we first consider a 3D SCO system whose edge metallic centers interact 
with its environment and apply the bisection technique to equation (3.7). The HS fraction, 
nHS, is derived from equation (3.2). The SCO selected system contains 125 metallic centers 
(5x5x5) of which 98 are surface metallic centers and only 27 are inner metallic centers. A 
typical distance between metal centers of about 9 Å [63] is taken into account corresponding 
to a cubic sampling of 3.6 nm x 3.6 nm x 3.6 nm. As a result, a hysteretic multi-steps 
transition is predicted (figure 3.16). 

50 100 150 200 250

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

n
H

S

T [K]
 

Figure 3.16 Simulated HS fraction, nHS, as a function of temperature for a 3D SCO system. 
The computational parameters are N = 125 (5x5x5), Δ/kB = 1450 K, G/kB = 470 K, J/kB = -
100 K, L/kB = 750 K and ln(g) = 4.7. 

 For comparison purposes, we plotted the computed thermal behavior without edge 
effect on figure 3.17. The following conclusions can be drawn: (i) the hysteresis related to the 
middle-step disappears, (ii) the HS fraction increases from 0 (when L/kB = 0 K) to 0.4 (when 
L/kB = 750 K), (iii) the transition is shifted to lower temperatures, which means that the edge 
interaction seems to have an action opposite to a typical applied pressure because the edge 
interaction favors the HS state while an applied pressure is known to favor the LS state, due to 
its lower ionic volume. 
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Figure 3.17 Simulated HS fraction, nHS, as a function of temperature for a 3D SCO system 
when L/kB = 0 K. The other parameters are the same as those of figure 3.16. 
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 The computed thermal behavior of a 2D SCO system (where the interactions within 
molecules between planes are less than 10% of that between the molecules in the same plane) 
with 121 of metallic centers is shown in figure 3.18. Even if the number of metallic centers is 
almost equal to the number of metallic centers of the 3D system used above (125), the role of 
edge effect is reduced, because the number of edge metallic centers is only 40 compared to 98 
metallic centers in the case of the 3D system. The spin transition is still incomplete, and 
proceeds in three steps but is no longer hysteretic. 
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Figure 3.18 Simulated HS fraction, nHS, as a function of temperature for a 2D SCO system 
with N = 121 (11x11). Other parameters are the same as those of figure 3.16. 

 Finally, we have investigated the increase of the system’s size (figure 3.19). By 
increasing the system’s size, i.e. by decreasing the ratio between edge and inner metallic 
centers (from 7 for a cube system with 64 metallic centers to 3.629 for a system with 125 
metallic centers and to 2.375 for a system with 216 metallic centers), the edge effect decreases 
and the role of inner metallic centers increases. As a result, when we increase the size of the 
system, the equilibrium temperature, T1/2, is shifted to higher temperatures and the transition 
proceeds continuously from the LS state to the HS state. 
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Figure 3.19 Simulated HS fraction, nHS, as a function of temperature for 3D SCO systems of 
different sizes. Other parameters are the same as those of figure 3.16. 
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3.6.  Size dependence of the equilibrium temperature in 2D SCO system 

 Figure 3.20 illustrates the thermal behavior of the HS fraction, nHS(T), calculated for 
various particle sizes. Upon decreasing the particle size (Nx× Nx), the transition temperature is 
shifted downward and the width of the thermal hysteresis loop progressively increases as a 
result of surface effects. The detailed discussion of the results of the model follows. This 
behavior contrasts with the classical behavior of the thermal hysteresis with particle size, for 
which it monotonously vanishes at small sizes. 
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Figure 3.20 The simulated thermal behavior of the total HS fraction, nHS(T), for different 
system’s sizes, showing an increase of the thermal hysteresis width for smaller nanoparticle 
sizes. The computational parameters are: Δ/kB = 1300 K, G/kB = 172.7 K, J/kB = 15 K, L/kB = 
120 K, ln(g) = 6.01. 

 We could separate the contributions of surface atoms and core atoms in the thermal 
behavior of the total HS fraction of figure 3.20. Figure 3.21 displays two chosen cases of 
nanoparticles with sizes (4x4) and (12x12) depicting all contributions. One can clearly see, 
that in both cases, the surface (blue curves) starts to transform much earlier than the core 
(green curves), which clearly indicates that the surface is driving the thermal LS to HS 
transitions. It is however obvious that for very bigger sizes (unreachable with MCES method), 
the contribution of the surface will be marginal and the core will dominate. This tendency is 
already visible in the case of 12x12 particle, in which we remark that the curve of the total 
response (red) is much closer to that of the bulky atoms. 
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Figure 3.21 The thermal behavior for the edge, inner and total molecules of the system for the 
cases: left - Nt = 16 (4x4) and right - Nt = 144 (12x12). The model parameters are the same as 
those of Figure 2.20. 

 We found that the size dependence of the transition temperature could be described by 
analytical laws (easily extended to 3D models). Here, it worth mentioning that even for small 
sizes, exact analytical solutions of Hamiltonian (1) in 2D are out of reach [64], contrary to our 
previous studied case where the surface atoms were fixed in the HS state [57].  

 We introduce here a simple idea that the transition temperature of the system is still the 
result of a null total effective ligand-field. From the expressions of the ligand field for the 
edges and core atoms, as listed in Table 3.1, the transition temperature, Teq, for a square lattice 
Nx x Nx is the solution of the following equation: 

( ) ( )
2ln 2 ln

2 4 1 0
2 2

∆ − ∆ − −
× − + × − =

B eq B eq

x x

k T g L k T g
N N  (3.10) 

which expresses that the total ligand-field is equal to zero at T=Teq. 

 Total Edges Core 

Number of 
atoms ��

� 4(Nx-1) (Nx-2)2 

Ligand-field  
∆ − 2 � − 	
� ln �

2
 

∆ − 	
� ln �
2

 

Table 3.1. The ligand-field correlated to the molecules number. 

Solving equation (3.10) gives the analytical expression of the lattice size-dependence of the 
transition temperature, as: 

,= +
bulk surfc s

eq eq eq

t t

N N
T T T

N N
 (3.11) 

which for a 2D square system can be written as: 
2 2( 2) 4( 1) ,= − + −

bulk surf

x eq x eq x eqN T N T N T  (3.12) 

leading to a parabolic and linear contribution of the bulk and surface contribution to 2
x eqN T

respectively. These tendencies have been checked numerically in the simulations, and as 
shown in figure 3.22, they are followed from a phenomenological point of view. 
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In equation 2.12, bulk

eqT  and surf

eqT  are the transition temperatures of the bulk and the surface, 

whose expressions are: 

216.3
ln
∆

= ≈
bulk

eq

B

T K
k g

   and   
2

176.3
ln

∆ −
= ≈

surf

eq

B

L
T K
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 (3.13) 
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Figure 3.22 The size-dependence of ��
���� showing a parabolic behavior for the bulk 

contribution and a quasi-linear trend for that of the surface, in qualitative good agreement 
with analytical predictions of equation (3.12). 

 Equation (3.11) predicts that the transition temperature has two limiting values, namely 

176.3 K= =
surf

eq eqT T  for 2=
x

N  for the smallest nanoparticle size, and 216
ln
∆

= ≈
eq

B

T K
k g

 

corresponding to the bulk transition temperature, reached for an infinite lattice ( → ∞
x

N ). 

 The relevance of equation (3.11) is supported by the comparison to the exact results 
derived from the entropic sampling method. As shown in figure 3.23, where the global 

eq
T  is 

plotted vs 1/
x

N , the analytical prediction (blue dots) given by equation (3.11) is in excellent 

agreement with the data obtained from the simulation (red squares). 
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Figure 3.23 Size dependence of the global transition temperature showing an excellent 
agreement between MC simulations (blue circles) and analytical predictions (red squares) of 
equation (2.11). The computational parameters were: Δ/kB = 1300 K, G/kB = 172.7 K, J/kB = 
15 K, L/kB = 120 K, ln(g) = 6.01 

 We should mention that the present model assumes that the effective degeneracy g  is 
constant. Thus, g  is considered to be independent on the strain at the surface and on the 
particle size. 

 For a thorough understanding of the size effects on the thermal behavior of the HS 
fraction, we performed MC simulations using the set of parameters given in figure 3.20, for 
which the studied system presents a gradual transition for the biggest studied size (i.e. 
�� = 12). For that, the short-range interaction parameter was set to J/kB = 15 K. It is worth 
mentioning that in the usual Ising-like model, the first-order phase transition takes place only 
when the condition TO.D. > Teq is satisfied. Here, TO.D., is the order-disorder (or Curie) 
temperature of the corresponding pure Ising model, obtained from Hamiltonian (1) by putting 
Δ/kB=0, L/kB=0 and g=1 (ln(g)=0). For J=0 values, the interactions between SC sites are of 
pure long-range nature and so TO.D = G/kB ~ 172.7 K (minimum value). For a large lattice 
size, the equilibrium temperature is dominated by the contribution of the bulk material and 
leads here to ��� ~ ���

����~216 K, which is larger than TOD. Under such conditions, for infinite 
lattice, the thermal behaviour of the HS fraction is that of a gradual conversion. When  � ≠ 0, 
the analytical expression of TOD is out of reach. So, to determine TOD for different lattice 
sizes, we performed MC simulations for Δ/kB = 0 K, G/kB = 172.7 K, J/kB = 15 K, L/kB = 0 K, 
ln(g) = 0. The results are summarized in figure 3.24, which shows a net increase of TOD with 
the system’s size, following a simple power law, �"#~$�� − 4, as demonstrated in figure 
3.24(c).  
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Figure 3.24 (a) The order-disorder temperature, TO.D., calculated for different system’s sizes. 
(b) Zoom around the critical temperatures, showing the increase of TO.D. with size. (c) TOD 
versus $�� − & showing a linear behavior. The red dashed line is the best linear fit. The 
computational parameters are: Δ/kB = 0 K, G/kB = 172.7 K, J/kB = 15 K, L/kB = 0 K, ln(g) = 0. 

 The values of TOD vary here from ~215 K for a 4x4 lattice to ~224 K for a 12x12 lattice. 
On the other hand, we found from figure 3.20, that Teq ~204 K (<TO.D=224K) for the lattice 
12x12. Consequently, for the simple Ising-like model, the system is expected to show a first-
order transition, while a gradual conversion is obtained in the simulations. However, for the 
lattice 4x4, we obtained a first-order transition with a hysteresis at Teq~186K, which satisfies 
the usual criteria of occurrence of first-order transitions in Ising-like model. Figure 3.25 
showing the behavior of the thermal hysteresis width versus the system sizes summarizes the 
results. The system undergoes a gradual SC transition for sizes bigger than 6=

x
N , and 

shows first order transitions below this critical value. Interestingly, 6=
x

N  corresponds to the 

value at which we observe only a slight difference between the number of particles in the bulk 

( )
2

2−xN  and that at the surface, ( )4 1−xN . This fact demonstrates that the surface is playing 

the major role in driving the spin transition in this problem, as observed in experiments. The 
competition between the core and surface molecules are driven by the long-range, G, and the 
surface, L, interactions and then the critical size to obtain the first order transition is function 
of the rate of these interaction parameters. 
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Figure 3.25 Size dependence of the thermal hysteresis width showing a drop of the bistability 
for nanoparticle bigger that 6x6. The model parameters are the same as those of figure 2.20.
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Figure 3.26 Evolution of HS fraction for different architectures of systems for the cases (a) 
=64K and (b) J/k

= 105K [11]. 

Cooperativity tuning in spin crossover nanostructures via matrix and architecture effect

0.0

0.3

0.6

0.9

1.2

1.5

T
u
p
-T

d
o
w

n
 [
K

]

Size dependence of the thermal hysteresis width showing a drop of the bistability 
for nanoparticle bigger that 6x6. The model parameters are the same as those of figure 2.20.
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Evolution of HS fraction for different architectures of systems for the cases (a) 
(b) J/kB=105K. The computational parameters are: 
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Size dependence of the thermal hysteresis width showing a drop of the bistability 
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The study of architecture effect for 1D and 2D SCO systems reported in 
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evolution of the high spin fraction and of the equilibrium temperature T1/2; ii) a strong 
decrease of the hysteresis loop width from ΔT=31 K (for a cubic architecture: N=60x60x60 
molecules) to ΔT=10 K (for a thin film like architecture: N=240x450x2 molecules). Thus, we 
can see that the change from a cubic architecture to a thin film architecture, results in a 
thermal spin transition behavior rather similar to that observed when the size effect was 
studied. In both cases the system’s residual HS fraction increases and the equilibrium 
temperature is shifted to lower temperatures. This is a consequence of the enhancement of the 
surface effects, once the system’s architecture or the system’s size is changed. These results 
stress once again the important role played by the cluster architecture on the SCO system’s 
cooperativity. 

 
Figure 3.28 Simulated thermal hysteresis loops for different architectures of a 3D system, at 
ambient pressure. The parameters’ values used in simulations are J/kB = 45 K, G/kB = 105 K, 
Δ/kB = 1300K, ln(g) = 6. 

 In Table 3.2 a short summary of the main hysteretic characteristics obtained by varying 
the shape of the compounds (from cubic to thin film architecture) is presented.  

Length 
(molecules) 

Width 
(molecules) 

Height 
(molecules) 

ΔT 
(K) 

nHS T1/2 

(K) 
60 60 60 31 0.10 208 

120 60 30 30 0.10 207.5 
90 80 30 30 0.10 207.5 

240 30 30 29 0.13 206.5 
540 20 20 26 0.18 204 
360 60 10 25 0.20 203 
120 180 10 25.50 0.19 203 

2160 10 10 18.50 0.32 197.75 
360 120 5 19.50 0.31 197.75 
240 180 5 19.50 0.31 197.75 
540 80 5 19.50 0.32 197.25 

1080 40 5 18.50 0.33 196.75 
3600 12 5 14.50 0.40 193.25 
240 450 2 10 0.51 183 

5400 20 2 7.50 0.55 180.75 

Table 3.2. Evolution of the hysteresis loop width, high spin fraction, and T1/2 respectively as a 
function of the system’s architecture of a 3D SCO system containing 216000 switchable 
molecules. 
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Figure 3.30 The thermal behaviour for different shapes of a 2D system containing 36 
molecules. The computational parameters are: Δ/kB = 1300 K, J/kB = 15 K, G/kB = 172.7 K, 
L/kB = 120K, ln(g) = 6.01, N = 36. 

3.7.2. Conclusions 

 This study demonstrates that the LS-HS transition triggered within an Ising-like model 
frame refined with a border SCO-matrix interactions, provides a qualitative insight on the 
physical origin of the cooperative phenomenon in 1D, 2D and 3D SCO systems embedded 
into a matrix. The main characteristic of this work is in the consideration of three types of 
interactions (short-range, long-range and SCO-matrix) which are responsible for the multi-
step transitions. These strong cooperative effects which is shown to occur even in small-sized 
nanoparticles systems, confirm the results reported recently [9,11,15,57,59,68-70], that, 
depending on the compounds characteristics, hysteretic behavior is observed in such systems. 
 Among the principal effects of the interaction between the matrix and the edge (or 
surfaces) molecules, reported in this chapter, is the reduction of the energy gap between LS 
and HS states of surface atoms. In 2D SC nanoparticles, for some particular cases, it may 
deeply affect the thermal transition and lead to a qualitatively different thermal behavior than 
usually expected. We demonstrated that a specific weaker ligand field at the surface of SC 
nanoparticles may lead to the emergence of a thermal hysteresis (i.e., a bistability) at small 
sizes while it was absent for bigger sizes. This result reactivates the debate about the existence 
or not of a thermal bistability in finite sized SC nanoparticles. This point is of high 
importance for potential application of SC nanoparticles as rapid switching devices, since the 
existence of a bistability is necessary at this scale. One should however underline the 
important effect of the long-range interactions in the present study, which was considered as 
insensitive to the system size and which probably deserves a careful examination and 
developments in further works. 

 The role of architecture on the hysteretic properties of 2D and 3D SCO systems 
bordered by molecules blocked in the HS state, was also investigated. Thus, we have analyzed 
the changes induced in both thermal induced spin state switching properties from a cubic 
shape to thin film architecture. Our simulations are in good agreement with the experimental 
data already reported in the literature [9]. Moreover, we have shown that the cooperativity of 
a SCO system, not only depends on the interactions strength, but it is also strongly dependent 
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on the system’s architecture. These differences in the architecture effect appear from the 
edge/inner molecules ratio and the missing bonds around ionic centers at the surface. 

 Further aspects related to the nanoparticle problem remain to be explored: the existence 
of a re-entrant first-order spin transition on decreasing the particle size will be analyzed using 
the same ideas developed through the manuscript. 
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4 Analysis of spin crossover nanochains using parabolic 

approximation in the framework of Atom-phonon 

coupling model 

4.1 Introduction 

 Considering atoms that are linked by springs characterized by three elastic constants as 

a function of the atom’s state, Nasser et al. propose [1,2] the APC model to give a clear and 

enlarged view of the ST process in the SCO compounds. Although the APC model has only 

been applied to 1D and 2D systems thus far, different behaviors under various external 

stimuli, such as: temperature [2-4], pressure [5], light [6,7] have already been reported using 

APC. 

 From an experimental point of view, a substantial effort has been directed to the study 

of 1D (chain) Fe
II
 compounds [8,9] in various research groups. Bridging the gap between 

theory and experiment is expected to be achieved in the near future by researchers. Thus, 

correlations between calculations from the models and the observations of the synthetic 

chemists could be established soon. Physically, it is difficult to control all the parameters 

which govern the ST process, but it is expected that, understanding the mechanism of ST in 

molecular chains will be a big step forward in understanding two or three dimensional 

systems.  

 In this chapter the atom-phonon coupling model is used to explain and illustrate the 

behavior of a linear chain of molecules pertaining to SCO compounds. It is well known that 

apart from the system’s cooperativity, which influences the hysteretic behavior of SCO 

complexes, the size of the system also plays a determinant role. The properties of the system 

are analyzed using a parabolic algorithm as a new method proposed in order to take into 

account the phonon contribution. Based on exact calculations, this method is closer to reality 

and more efficient than the mean-field approximation (MFA). In particular, both the parabolic 

algorithm and the dynamic-matrix method are tested and compared and the analysis of the 

system’s behavior shows that large size systems can be treated without generating all the 

system states. We also analyzed the role of degeneracy, and the thermal variation of both the 

entropy and heat capacity in the ferromagnetic-like coupling case. These studies play an 

important role in the choice process of SCO compounds for the desired application. Thus, it is 

known that the compounds that exhibit transition with hysteresis have the main domain of 

application the memory devices. The compounds with a gradual transition, with a weak 

cooperativity, are destined to sensors devices. So, before to build a sensor it is important to 

know how to choose the compound according to the cooperativity and how will be influenced 

the behavior by interaction with other perturbation factors. 

 The originality of the APC model comes from the assumption that the neighboring 

molecules are connected by a spring whose elastic constant depends on the molecular states. 

Because the intra-molecular vibrations are not taken into account in the model, the SCO 

molecules are treated as atoms. Thus, the three elastic constants are defined as: λ=CLL when 

both the atoms are in the LS state, µ=CLH when one atom is in a LS state and the other atom 

in a HS state, and ν =CHH when both the atoms are in a HS state (figure 4.1). This makes the 

Hamiltonian of the system easy to cast.  
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4.2 The model 

 In this section only some aspects of the APC model are considered and so we recall 

some of the equations which are the prerequisite to describe this work. More details about 

APC can be found in [2] as fully discussed by Nasser et al. To study the behavior of SCO 

systems in the framework of the APC model, we considered a circular chain of N atoms 

interconnected by a spring, with elastic constants as already described in the introduction; 

where λ > µ > ν. To present the electronic state of the atoms, we associate to each electronic 

state of the atoms a fictitious spin operator σ which has two eigenvalues +1 or -1 as a function 

of the atom state (HS or LS respectively).  

 In the framework of the APC model, the thermal variation of the ���  (high spin 

fraction) is mediated by the competitions between the phonons which favor the HS state and 

the energy gap ∆, between the HS and the LS states, which favors the LS state. It is worth to 

note that in this contribution we consider the static spin configurations and we don’t take into 

account the dynamic behavior as it has been done by Bonilla et al. [12] and Rikvold et al. 

[13,14]. 

 The total Hamiltonian of the chain can be written as the sum of spin and phonon 

contributions as: 

spin phononH H H= +  (4.1)

From the definition of Δ which is the difference in energy between the two electronic levels 

(LS) and (HS), the spin Hamiltonian and phonon Hamiltonian can be expressed as: 

2
spin i

H σ=
∆

∑  (4.2)

( )nhs

phonon igH B f=∑  
(4.3)

where B (��) is the Boltzmann factor for each configuration(i). 

 Then, the Hamiltonian given by equation (4.1) can be solved in three different cases as 

shown below.  

4.3 The methods 

4.3.1 Dynamic Matrix method 

 For a number N of atoms we can generate all the possible configurations as sketched in 

figure 4.2. In this case we explore all the possibilities which are in good agreement with a real 

system. 

 

Figure 4.2 Schematic representation of the possible atoms’ configurations in the chain. 
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 Taking into account that, when one molecule is changing its state from LS to HS or vice 

versa, the whole chain is influenced, it is necessary to calculate for each configuration the 

Boltzmann factor as given by (equation (4.4)): 

( ) ( )exp
i i

B f Eβ= −  (4.4)

where: 
1

Bk T
β = , Ei is the energy of state i; kB is the Boltzmann’s constant, and T is the 

temperature. 

The dynamic matrix is determined from the equation of motion of the atoms (equation (4.5)) 

and the frequency �� of each molecule is given by the eigen values of the system formed by 

equation (4.5) and written as:  

( ) ( )

( ) ( )

( ) ( )

1 1,2 2 1 1, 1

2 2,3 3 2 1,2 1 2

, 1 1 1, 1

N N

i i i i i i i i i

mu C u u C u u

mu C u u C u u

mu C u u C u u+ + − −

 = − + −


= − + −


= − + −

ɺɺ

ɺɺ

ɺɺ
 

(4.5)

where: Ci,i+1 represents the elastic constant between two neighbor molecules and which can be 

any of CLL, CHL, CHH; ui is the movement of one molecule from any consecutive state i, i+1. 

Taking 
i

u  and 
i

uɺɺ : 

i t

i iu A e
ω−=  (4.6)

2 i t

i iu A e
ωω −= −ɺɺ

 
(4.7)

and after substitution in equation (4.5), with one of the elastic constants corresponding to the 

spin states of the atoms, the dynamic matrix is given by: 

1,2 1,   1,2 1,   

LL LL LL LL

1,2 1,2 2,3 2,3

LL LL LL LL

                                                                    
C C C C

                                                             
C C C C

N N
C C C C

C C C C

+ − −

− + −

⋯ ⋯ ⋯

⋯ ⋯

,1 1, 1, ,1

LL LL LL LL

          

                                                           
C C C C

N N N N N N
C C C C− −− − +

⋯

⋯ ⋯ ⋯

 (4.8)

Then one finds the expressions of λi and ωi, the eigenvalues and corresponding frequencies of 

this dynamic matrix, as expressed in (equations (4.9) and (4.10)): 

2

i
i

LL

m

C

ω
λ =  (4.9)

 LL
i i

C

m
ω λ=

 
(4.10)

The vibrational frequencies of the molecules are obtained by calculating the eigen values of 

the system, which depend only on the elastic constant and on the mass m of the atom and can 

be rewritten (equation (4.12)) in terms of ωmax defined by equation (4.11) as: 

2 LL
max

C

m
ω =  (4.11)
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2

max
i i

ω
ω λ=

 
(4.12)

The partition function is given by: 

 
2

1,

1
 

2sinh
2

iHS i
mnk

i N i

B

Z g e

k T

β

ω

∆
−

=

=
 
 
 

∏
ℏ

 
(4.13)

 Constructing the dynamic matrix from all the states distribution as sketched in figure 

4.2, will result in some configurations which will have the same value of the partition 

function (Z). To override this aspect we define a parameter “nbre(nHS)” which is the sum of 

the configuration with the same “nHS” value and with the same eigen values (frequency). 

Since we take only the phonon contribution we must divide each partition function 

corresponding to each configuration by ��	

 . ��	


  is the partition function when the all the 

molecules in the chain are in the LS state.  

1

1,
{ ( ) / }k

ph HSk N
Z nbre n Z Z

=
=∑   (4.14)

 

4.3.2 The Parabolic algorithm 

 Understanding the mechanisms underlying the behavior of complex systems is a priority 

in various fields whether pertaining to fundamental or applied research. During the last years 

a significant interest in research has thus been directed to the development of models and 

methods which can simulate the behavior of different kinds of such complex systems. In the 

physics of the bistable systems, only few methods exists that allows  to solve exactly finite or 

infinite systems, but fortunately enough, in the case of finite systems, numerical methods can 

be developed to achieve exact or approximate solutions. 

 In this respect, we propose a new method, or algorithm, based on a parabolic equation 

to determine a distribution over the system’s states, or energies. This equation is expressed as: 

( ) 2
f x ax bx= +  (4.15)

 For a configuration with an elastic constant between the atoms equal to K, the partition 

function is given by: 

( )
1, 2,..., 1 ,

2 2

1

1
2sinh sin

2

N N

K
K

t N
α

π
α

λ

 
=± ± ± − 

 

=
 
 
 

∏ ∏  
(4.16)

where t is a reduced parameter expressed as: 

( )max

Bk T
t

w λ
=
ℏ

  (4.17)

In the framework of this parabolic approximation we consider three different situations, 

namely: 

i) when all the molecules are in a LS state, that is with a chain with the following atomic 

configuration (LS-LS-LS…LS-LS-LS), and with the partition function given by : 
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( )
1, 2,..., 1 ,

2 2

1

1
2sinh sin

2

N N

t N
α

λ
π

α 
=± ± ± − 

 

=
 
 
 

∏ ∏  
(4.18)

ii) when all the molecules are connected by a spring ν corresponding to the system’s chain 

with the atomic configuration (HS-HS-HS….HS-HS-HS), and with the partition function 

given by: 

( )
1, 2,..., 1 ,

2 2

1

1
2sinh sin

2

N N

t N
α

ν
ν π

α
λ

 
=± ± ± − 

 

=
 
 
 

∏ ∏  
(4.19)

iii) and finally, the third case, when the chain is a mixture of molecules in LS or HS states for 

which K=μ, and with the partition function given by: 

( )
1, 2,..., 1 ,

2 2

1

1
2sinh sin

2

N N

t N
α

µ
µ π

α
λ

 
=± ± ± − 

 

=
 
 
 

∏ ∏  
(4.20)

We first define a partition function parameter Rph connected only to the phonon contribution. 

Depending on the molecules’ spin state, we define the following parameters: 

a) ( )
( )
( )

Π
  

Π
phR

µ
µ

λ
=  when the chain is a mixture of molecules in HS and LS states (HS-LS-

HS…LS-HS-LS) with nHS=N/2; 

b) ( )
( )
( )

Π
  

Π
ph

R
ν

ν
λ

=  when the chain consists only of molecules in HS state (HS-HS-HS….HS-

HS-HS) with nHS=N; 

In the framework of the “parabolic approximation” the phonon contribution to the partition 

function Rph, as previously defined, can be written in the parabolic form as follows: 

( ) 2ln     
ph HS HS

R an bn= +  (4.21)

Replacing the partition functions ��	�
� and ��	��� in equation (4.21) we obtain a system 

which takes the following form: 

( )( ) ( )

( )( )

2

2

ln     ( / 2)     / 2

ln         

ph

ph

R a N b N

R a N b N

µ

ν

 = +


= +

 (4.22)

from which a and b can be solved as: 

( )( ) ( )( )

( )( ) ( )( )

2

2ln    4  ln  

4  ln    ln    
 

ph ph

ph ph

R R
a

N

R R
b

N

ν µ

µ ν

 −
=




−
=

 (4.23)

From the partition function of equation (4.21) corresponding to different chain’s states, the 

total partition function of the system can then be calculated as: 
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( )
( ) ( )

!δ ln 2 ln !  !2         ph

N
nhs N R N nhs nhsnhs t

ph

nhs

Z parabolic g e e e
− − −

  
=  

  
∑  (4.24)

where δ is another reduced parameter expressed as: 

( )max

δ
ω λ

∆
=
ℏ

 

 (4.25)

4.3.3 Mean field approximation 

 It is already known [2,4] that MFA can be applied to solve the APC Hamiltonian. The 

effective uniform field, h, and the effective exchange-like interaction J, are used to express 

the variation of the  Hamiltonian H0 [4]: 

( ) ( )0 0 0 ,s phH H h J H K= +  (4.26)

where 

0 1

1 1

 ˆ ˆ ˆ 
N N

s i i i

i i

H h Jσ σ σ +

= =

= − + −∑ ∑
 

 (4.27)

And where the phonon contribution to the Hamiltonian is given by: 

( )
2

2

0

1 1

   
2 2

N N

i

ph i

i i

p K
H K q

m= =

= +∑ ∑
 

 (4.28)

Under the assumption that the elastic constant K is the same for all atoms. For a configuration 

given by the fictitious magnetization m=<σi> and spin correlations s= <σi σj>, the effective 

elastic constant K determined by this technique is given by [4]:  

2   2

4 2 4
K m s

λ µ ν ν λ λ µ ν+ + − − +
= + +  (4.29)

and the phonon part of the Hamiltonian can then be written as: 

( )
( ) ( )

   coth     
2 2 

max max

phonon

w wK K
H K sin sin

N Nα

λ λπ π
α α

λ λ

 
=   

 
∑

ℏ ℏ

 

 (4.30)

Thus, the fictitious magnetization, m, and the fictitious spin correlation, s, are given by the 

following equations, as it has been proposed in Ref [2]: 

ln
sinh  

2

J g
e h k T

m
B

β β
  

+  
  =

 

 (4.31)

22
1

J
e

s
A B

β−

= −

  

(4.32)

The parameters A, B, h, J  can then be expressed as follows: 

ln
cosh sinh ;

2

J J g
A e e h kTβ β β

  
= +  

  
 

 (4.33)

2 2sin ;
2

J Jlng
B e h h kT eβ ββ −  

= + +  
  

  

(4.34)
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[ ]
 ;

2 4

phonon
H K

h
K N

ν λ∆ −
= − − (4.35)

[ ]2

8

phononH K
J

K N

λ µ ν− +
= − (4.36)

where the elastic constants depend on the spin state of the atoms in the chain as given 

explicitly in equations (4.35) and (4.36) for the effective uniform field, h, and for the effective 

exchange-like interaction, J, respectively.  

4.4 Results and discussions 

 Solving the system’s Hamiltonian (equation (4.1)) by using either of the above three 

mentioned methods, allows the determination of the HS fraction ���  as function of 

temperature. 

 Figure 4.3a and figure 4.3b show numerical results concerning the evolution of HS 

fraction. Before presenting in details the next figure, we recall that the Ising like models lead 

to phase transitions when the balance between short-range and long-range interactions allow 

cooperative effects.  

 In the APC model the x and y reduced parameters are introduced as follows: 

x
ν

λ
=

 

 (4.37)

 
2 2

y
λ ν λ ν

µ
+ −

= + (4.38)

 The parameter y is related to the short-range interaction: y=0 corresponds to the absence 

of short range interaction. y>0 and y<0 are related to the “ferromagnetic-like” and “anti-

ferromagnetic-like” coupling respectively.  

 Figures 4.3a and 4.3b display the evolution of HS fraction given by the three methods 

for a chain of N=8 molecules (figure 4.3a) or N=20 molecules (figure 4.3b) with the 

calculated values plotted as circles, triangles and stars. The circles correspond to the date 

obtained within the MFA method; the triangles within the parabolic method and the stars 

within the dynamic matrix method. 

 For regular interactions strength corresponding to x=0.2 and y=0.2, the variation 

displayed in figures 4.3a and 4.3b shows that the parabolic method gives the same results as 

the dynamic matrix method, that is a gradual transition. In the frame-work of the MFA 

method, the system displays a hysteretic behaviour with a hysteresis width equal to 0.15 for 

N=8 molecules and 0.2 for N=20 molecules. Furthermore, the critical temperature T1/2, which 

corresponds to nHS=0.5, is shifted to higher temperatures when the system’s size is increased. 

Here it is worth noting that the MFA method gives a hysteretic behavior because it generates 

artificially infinite long-range interactions. 

 Motivated by the good agreement between the parabolic method and the dynamic 

matrix method, the former method has been applied to different cases as described in the next 

section. The purpose is to find out if the parabolic method always gives the same results as the 

exact method or if it is influenced by other parameters so as to determine its range of 

application. 
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Figure 4.3 The thermal variation of high spin fraction nHS for a 1D SCO compound a) N=8 

molecules b) N=20 molecules using the MFA method (circles), the Parabolic method 

(triangles), the Dynamic matrix (stars). Other parameter are x=0.2, y=0.2, g=5 and δ=4. 

4.4.1 Role of parameters in the parabolic algorithm  

 In this section the main goal is to develop a method to study large systems (high number 

of molecules) through the parabolic algorithm without having to generate all the state 

distribution as with the dynamic matrix method. To validate our new method we first study in 

this section the key factors which influence the curves calculated with the parabolic algorithm 

by considering only short range interactions on the one hand and then both short and long 

range interactions on the other.  
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Figure 4.4 The thermal variation of the high spin fraction nHS for a 1D SCO compound (N=8 

molecules) for different degeneracies a) g=5 b) g=150 c) g=1000 d) g=5000 using, the 

Parabolic method (triangles), the Dynamic matrix (stars). Other parameter are x=0.3, y=0, and 

δ=0.6. 
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 It is known that in SCO compounds, two main typical behaviors can be distinguished in 

relation to the phenomenological transformations between the LS and HS states: the 

cooperative case in which the ST transformation occurs abruptly within a limited temperature 

range of some Kelvin and the other type, non-cooperative case, usually called gradual case, in 

which the ST takes place gradually over an ample temperature range, typically greater than 

50K. To elucidate the factors which contribute to the system’s behavior, all the studies carried 

over the years illustrated different aspects. Thus, besides the influence of the interactions in 

the system, an important role is played by the variation of the molar entropy ΔS. Taking into 

account that g= ΔS/R, with R the universal Gas Constant, the thermal evolution of the high 

spin fraction for different values of degeneracy (g) is displayed in figures 4.4 and 4.5.  

 The thermal dependence of the HS fraction obtained using both methods: the dynamic 

matrix and the parabolic method, for various values of the degeneracy is reported in figure 

4.4. The presence of short-range interactions has an important contribution on the system’s 

behavior and leads to a gradual spin conversion. The results obtained within both methods are 

in excellent agreement as shown in figures 4.4.  

 The system’s behavior when both the short-range interactions and long-range 

interactions are taken into account is shown in figure 4.5 in the limiting case, when the system 

presents strong interactions (x=0.1, y=0.9).  
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Figure 4.5 The thermal variation of nHS for a 1D SCO compound (N=8 molecules) for 

different degeneracy values a) g=5 b) g=150 c) g=1000 d) g=5000 using the Parabolic method 

(triangle curve), the Dynamic matrix (stars curve). The following computational parameters 

have been used: x=0.1, y=0.9, and δ=0.6. 

 The following characteristics can be depicted from figures 4.5a) to 4.5d): (i) when the 

interactions between the molecules (denoted here by x and y) are increased the gradual 

transition moves to an abrupt one, (ii) at low and high temperatures the values given by both 

methods are the same, and (iii) for small degeneracies, a difference is noted in the results 

given by the two methods when the system is characterized by strong interactions between the 

molecules. Comparing results reported in figure 4.4 and figure 4.5, it can be observed that, for 

small values of the degeneracy different results have been obtained when both short and long-
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range interactions are taken into account. When the degeneracy is increased, as can be seen in 

figures 4.5c and 4.5d, for g=1000 and g=5000, the curves obtained using the two methods are 

similar. Thus within the APC model, the choice of the degeneracy parameter is an important 

point underlining the importance of the phonon contribution. Indeed, it is known that the 

degeneracy factor takes into account both electronic and vibrational contributions. Note that 

by increasing the degeneracy value the equilibrium temperature T1/2 is decreasing.  

4.4.2 Entropy variation and heat capacity using the dynamic matrix method vs. 

the parabolic method  

 Following the results given in the previous section showing the good agreement 

between the exact method (dynamic matrix) and the parabolic method, at high degeneracies, 

the thermal dependence of the entropy and heat capacity for different interactions and sizes 

were calculated under these conditions. The system entropy could be calculated as the first 

derivative of the Gibbs free energy with respect with the temperature S= -dF/dt. 

 Computations were carried for two chains’ lengths (N= 8 molecules and N = 20 

molecules) and for two cases: when short-range interactions are absent in the systems (y=0) 

and when the SCO system is characterized by the presence of strong short-range interactions. 

 Both the parabolic method and the dynamic matrix method lead to the same curves and 

the same evolution between the LS and HS states as shown in figure 4.6. One may also note 

the gradual entropy variation in figure 4.6b and figure 4.6d as a consequence of weak or the 

absence of cooperativity effects in the system. This aspect is expected because short-range 

interactions being equal to 0, the system is influenced only by long-range interactions. 
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Figure 4.6 Time dependence of the entropy per atom obtained using: the dynamic matrix 

method (red curve) and the parabolic method (blue curve) for two different sizes and 

interactions. Other parameter are g=1000 and δ=0.6. 

 Figure 4.7 display the evolution of the heat capacity as calculated from the relationship, 

C = dS/dt for a chain which contains 8 molecules (figures 4.7a and 4.7b) and 20 molecules 
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(figures 4.7c and 4.7d). The two methods, this time show a difference in the evolution of heat 

capacity in all cases. The heat capacity curves obtained with the exact method have a lower 

maximum compared with those  obtained using the parabolic method because the total free 

energy of the system for a given temperature obtained using the exact method is less than the 

total free energy of the system given by the parabolic method.  
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Figure 4.7 Time dependence of the heat capacity obtained using: the dynamic matrix method 

(red curve) and the parabolic method (blue curve) for two different sizes and interactions. 

Other parameter are g=1000 and δ=0.6. 

 The dynamic matrix method needs a higher computation power than the parabolic one, 

because it is necessary to generate all the 2
N
 (N = number of molecules) states of the system. 

For large systems, the parabolic method becomes more attractive and easier to apply from this 

point of view and in the next figures (4.8 and 4.9) are given the variation of entropy and heat 

capacity using parabolic method for N=50 molecules and N=100 molecules.  

 As was expected in the evolution of the entropy even if the size is big (N=100 

molecules), for small interactions (figures 4.8b and 4.8d) the system does not present an 

abrupt thermal variation of the entropy as for large interactions (figures 4.8a and 4.8c). This 

aspect between the systems behavior is also a characteristic of the heat capacity evolution 

where for (x=0.1 and y=0.9) appears a dominant peak around Tc compared with results 

obtained with (x=0.3 and y=0.). 

 Finally, lets remark that the abrupt entropy which appears around Tc (in figure 4.8a and 

4.8d) has been observed experimentally for [Fe(phen)2 (NCS)2] and [Fe(phen)2 (NCSe)2] 

compounds as can be found in some reviewed papers [15-18]. The anomalous large peak of 

the heat capacity around Tc reported in figures 4.9a and 4.9d has also been observed for the 

first time by Sorai and Seki [18] and was attributed to a phase transition. 
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Figure 4.8 Thermal dependence of the entropy per atom obtained using parabolic method for 

two different sizes and interactions. Other parameter are g=1000 and δ=0.6. 
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Figure 4.9 Thermal dependence of the heat capacity obtained using the parabolic method for 

two different size and interactions. The computational parameters used in the simulations are: 

g=1000 and δ=0.6. 
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4.5 The role of edge atoms using the dynamic matrix transfer and the 

free energy methods 

 Using Monte Carlo Metropolis (MCM) algorithm described in [19] the switching 

probability between the old state and the new state, P, is given by the following equation: 
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In the free energy method the magnetization M is calculated as follows: 
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 (4.40)

where deg is the number of configurations with the same eigen value. 

The high spin fraction nHS giving the ratio between the number of atoms in the high spin state 

and the total number of atoms is defined as: 

( )1 / 2
HS

n M= +  (4.41)

Using the following formula to calculate the free energy, F, we are able to study the stability 

of the system’s state: 
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 (4.42)

 To explain the role of edge atoms two types of systems were considered: an A type 

system in which the molecules are either HS and (or) LS and a B type system in which we 

add and fix at the beginning and at the end, one atom in the HS state to an A type system. In 

this case the system A can be HS……HS-LS……LS while the system B is of the form 

HS+LS……HS-LS……LS+HS. Figure 4.10 a) and b) show the evolution of the HS fraction, 

nHS, as a function of temperature and the free energy for three different temperatures. In figure 

4.10 a) besides the red curve, when the temperature is increasing and the blue curve when the 

temperature is decreasing (obtained by the transfer matrix method and the MCM algorithm), 

the results obtained by the numerical calculation previously described are plotted in black. 
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Figure 4.10 a) the simulated HS fraction, nHS, as a function of the temperature and b) the free 

energy for three different temperatures for an A type system. 
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 In figures 4.11 a) and b) are reported the HS fraction and the free energy for three 

different temperatures for a B type system. The comparison of the results reported in figure 

4.10 a) with figure 4.11 a) shows that by adding and fixing the edge atoms in the HS state, the 

transition temperature is shifted to a lower temperature and the width of the hysteresis loop is 

decreased. Moreover the transition is more abrupt. 
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Figure 4.11 a) the simulated HS fraction, nHS, as a function of the temperature and b) the free 

energy for three different temperatures for a B type system. 
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Figure 4.12 Thermal dependence of the heat capacity. The computational parameters are the 

same as those of figure 4.11. 

4.6 Conclusion 

 In this chapter is presented a new method to describe the phonons contribution on the 

thermal behavior of SCO compounds using the APC model. Besides the use of the exact 

dynamical matrix method, the MFA approximation and the parabolic algorithm have been 

used, in order to simulate the thermal behavior when various parameters that play an 

important role on the spin crossover behavior are varied. We give herein a systematic 

comparison between the dynamic matrix and parabolic methods. For small N values, the exact 

method and the parabolic approximation give qualitatively the same behavior. Indeed, as 

reported in figure 4.3, the MFA leads to a hysteretic behavior in the thermal variation of the 

HS fraction, nHS, while using the dynamic matrix and parabolic methods a thermal spin 

conversion is obtained. The parabolic method leads to the same thermal behavior of the SCO 

system as that obtained with the dynamic matrix method, especially for small sized system. 

However, for large systems, the entropy contribution plays an important role and a close 

correspondence between results given by these two methods is obtained only for high values 
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of the degeneracy ratio. For example, for N=8, this discrepancy disappears for g higher than 

1000, that is when the variation of the entropy at the transition temperature is higher than 

Rln(g) = 57.9 Joule K
-1

 mol
-1

. This entropy variation value is common in SCO systems.  

 In conclusion, using the parabolic method we have reproduced the thermal evolution of 

the HS fraction and the entropy variation in 1D SCO systems. We established that, the 

thermal variation of the heat capacity is in good agreement with the results reported by Sorai 

and Seki [18] confirming that the SCO system presents a first order phase transition. The 

phase transition obtained using APC model confirms also the results already obtained using 

Ising-like models with both short-range and long-range interactions [20].  
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5 Pressure effect in molecular spin crossover compounds 

5.1 Analysis of the P-T-nHS phase diagram of [Fe(hyptrz)]A2∙H2O spin 

crossover 1D coordination polymer 

 The increasing demand regarding safety and security rules lead to applications that 
involve advanced sensors with higher sensitivity, better technical specifications, lower 
dimensions andand low energy consumption. A special class of sensors is represented by 
temperature and pressure solid state sensors that allow direct or remote detection. This kind of 
sensing devices can be realized by developing new multifunctional materials exhibiting 
appropriate properties that can be controlled at the atomic or molecular level. Interesting 
properties that could be used in these applications are exhibited by molecular spin crossover 
(SCO) materials. The SCO phenomenon is a molecular process which combines an electronic 
transformation and atomic displacements in the coordination sphere of a central metal ion 3d4 
–3d7. Thus, the SCO usually occurs between a diamagnetic low-spin (LS) state and a 
paramagnetic high-spin (HS) state, which can be triggered by various external perturbations 
such as temperature, pressure, light or magnetic field [1-3]. In the course of the SCO 
phenomenon, physical properties (magnetic, optical, electrical, vibrational, etc.) of the 
material change dramatically and make possible to follow the process by various detection 
techniques (magnetic, optical, electrical, etc.) [1,2,4-6]. Among the various SCO systems 
available, 1D Fe(II) 1,2,4-triazole coordination polymers play a growing role, not only 
because this family of molecules can display both hysteretic and non-hysteretic behaviors, but 
also exhibits a very good optical contrast [7-10]. The last property is very important in optical 
detection of temperature or pressure variations [11]. However, due to both temperature and 
pressure sensitivity of a SCO material, the study of the pressure-temperature (p-T) phase 
diagram is mandatory. In this context, we present an experimental and theoretical study on the 
(p-T) phase diagram of a 1D SCO compound in order to find the optimal conditions of its use 
as temperature and pressure sensor in special environments such as cryogenic temperatures 
and/or high pressures. Indeed, there is a current need of temperature and pressure sensors with 
non-contact detection that could work at cryogenic temperatures and high pressure, 
respectively in a temperature/pressure range as large as possible. 

 One remarkable successful model used in the description of bistable SCO systems is the 
Ising-like model, which describes interacting two-level units; the energy levels having 
different energies and degeneracies [12]. In this chapter, the Ising-like model was used for 
describing both static and dynamic properties of SCO compounds under different external 
stimuli such as temperature and pressure [13,14]. 

 Described in the chapter 1, in this chapter are recalls only some important equations of 
Ising like model. So, the Ising Hamiltonian can be written as follows:  

,
,

ln
ˆ ˆ ˆ ˆ ˆ

2
B

i i j i j i

i i j i

k T g
H J Gσ σ σ σ σ

< >

∆ −
= − − 〈 〉∑ ∑ ∑  (5.1)

where σ̂  is the fictitious spin operator with the eigen values 1+  (when the molecule is in the 

HS state) and 1−  (when the molecule is in the LS state); 
,i j

∑ - denotes the sum over nearest 

neighbouring spins; the gap energy, ( ) ( )E HS E LS∆ = −  is the internal energies differences 

between the HS and LS; the term lnBk T g  take into account the entropy contribution (g is the 

degeneracy ratio); ,i j
J  stands for the short-range interaction parameter that represents the 
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 The phase diagram in (p-T-nHS) units of an isolate system (uncooperative), described by 
a null effective interaction parameter Γ=0, is displayed in figure 5.6. By increasing the applied 
pressure, we note that the thermal dependence becomes more gradual. A similar effect is 
observed in the pressure dependence of the HS fraction recorded under increasing pressures. 
This kind of behaviors is suited for temperature and pressure sensors. By recording the optical 
density in both HS and LS spin states and its corresponding temperatures, the device could be 
calibrated in order to be used as a temperature or pressure sensor. 

 

Figure 5.6 Simulated 3D (p-T-nHS) phase diagram characteristic to a non-cooperative SCO 
system. The values of the parameters used in calculations are: ∆/kB = 800 K, Γ/kB = 0 K, ln(g) 
= 7 and δV=13.2 Ȧ3. 

 When the intermolecular interactions are taken into account i.e. 0Γ ≠ , above a critical 
value of Γ , the spin transition occurs with a hysteresis (see figure 5.7). Despite these 
properties could be exploited in technological applications such as molecular switches or as 
recording media, these are not appropriate for temperature and pressure sensing applications. 
However, getting profit from pressure effect, we show that even an highly cooperative system 
could be used as temperature and pressure sensor. Indeed, when the applied pressure is 
increased the hysteresis width decreases until it completely vanishes (see figure 5.7). The 
critical curve that separates the hysteretic behavior from the non-hysteretic one is known as 
spinodal curve. Thus, starting from the equation (5.4), we write: 

1 1 2 ln
artanh( ) ln

2 1 2
m m T g

m
m T

+ Γ + − ∆ 
= = − 

 (5.5)

Thus, we obtain the dependence of temperature T as a function of m: 

2
1

ln ln
1

m
T

m
g

m

Γ − ∆
=

+ − − 

 
(5.6)

 The spinodal curve can be founded by computing 0dT
dm

=  (or 0dp
dm

=  ). Thus, the 

spinodal curve will be described by the following expression: 
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 (5.7)

 

 

Figure 5.7 The phase diagram (p-T-nHS) calculated for a cooperative system characterized by 
a short-range interaction parameter of Γ/kB = 200 K. The black curve represents the spinodal 
curve. The values of the parameters used in calculations are: ∆/kB = 800 K, Γ/kB = 300 K, 
ln(g) = 7 and δV=13.2 Ȧ3.  

 Of course, the spinodal curve is a function of interaction parameter, Γ, i.e. the larger is 
the Γ-value, the more extended will be the hysteretic region (see figure 5.8). 
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Figure 5.8 Simulated 3D P-T-nHS spinodal curve and its projections on the coordination 
planes for various values of the interaction parameter: from left to right: Γ/kB = 200 K, Γ/kB = 
300 K, Γ/kB = 400 K. The values of the parameters used in calculations are: ∆/kB = 800 K, 
lng = 7 and δV=13.2 Ȧ3. 

 Indeed, for pressures and/or temperature higher than the critical value (pc and Tc 
respectively) the SCO system loose the hysteretic behavior and the spin transition from one 
spin state to another occurs gradually, property suited in specific sensors applications [8]. 

5.2 Impact detection using SCO materials 

 The continuous developments of chemical systems allows the selection of the best SCO 
systems with special requirements concerning the SCO temperature region, which need to be 
located around room temperature region as well as the width of their bistability domain which 
need to be as large as possible. Following these conditions, we decided to focus on the 1D 
chain [Fe(hyetrz)3]I2∙H2O (hyetrz = 4-(2’-hydroxyethyl)-1,2,4-triazole) as a suitable 
candidate. This material is known to exhibit a cooperative and thermo chromic spin transition 
from LS (S = 0, violet) to HS (S = 2, white) around the room temperature region [42]. In this 
work we show that [Fe(hyetrz)3]I2∙H2O can be used as a visual detector of strong mechanical 
contact pressure from 25 MPa to 250 MPa. This result is supported by thermal dependence of 
the optical reflectivity measurements, 57Fe Mössbauer spectroscopy and differential scanning 
calorimetry. A correlation of SCO properties with the pressure contact is made thanks to an 
Ising-like model. These results provide the basis for the construction of a marker pressure 
device. 

5.2.1 Results and discussions 

 The colour change of the sample from white (HS) to violet (LS) was monitored through 
variable-temperature optical reflectivity measurements in a dry nitrogen atmosphere at 2 
K/min. The thermal dependence of the diffuse reflectance has been recorded, simultaneously, 
spectroscopically and at a quasi-monochromatic wavelength of λ = 550(50) nm (see figure 
5.9).  
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Figure 5.9 Thermal evolution of reflectance spectra recorded on [Fe(hyetrz)3]I2∙H2O in the 
solid state (left) and of the optical density at λ = 550 nm (right).  

 The hysteretic SCO behaviour around room temperature is confirmed for 
[Fe(hyetrz)3]I2∙H2O at Tc

↑ = 292 K and Tc
↓ = 275 K by optical reflectivity measurements 

(figure 5.9). The high colour contrast of the sample, between the two spin states, can be 
tracked by recording temperature dependence of the reflectance spectra. figure 5.9 (left) 
displays the temperature dependence of the diffuse reflectance, recorded in cooling mode. In 
these measurements was used a 100 W halogen bulb, which is installed on the optical 
microscope. At the lowest temperature, the reflectance spectrum shows a band centred on 680 
nm which is assigned to the LS state, in good agreement with the pink colour of the sample. 
With increasing the temperature, a blue shift of the spectrum maximum is observed, followed 
by a broadening of the reflectance spectrum, in good agreement as well with the white colour 
of the sample in the HS state. It is worth noting that the reflectance spectra display an 
important background from the light source light, which is however constant for all 
experiments ensuring that the observed changes originate from the sample’s colour change. 
By integration of these spectra using a photodiode, for each temperature, the SCO curve as a 
function of temperature could be obtained (figure 5.9-right). The optical characterization has 
been completed by differential scanning calorimetric (DSC) measurements which were 
undertaken to confirm the spin transition temperature range as well as to determine, 
quantitatively, the thermodynamic parameters to be used in our Ising model described 
hereafter.  
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Figure 5.10 DSC curves for [Fe(hyetrz)3]I2∙H2O over the 265-303 K temperature range. 
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 The DSC curve, recorded at 10 K/min in the heating and cooling modes (figure 5.10), 
shows an endothermic peak at Tmax

↑ = 293 K and an exothermic peak at Tmax
↓ = 280 K, in fair 

agreement with the transition temperatures observed from optical measurements. The 
difference seen in the lower branch of the spin transition curve is associated to the lower scan 
rate (2K/min) used for the optical measurements. The enthalpy and entropy variations were 
determined as ΔH = 16.42 kJmol-1 and ΔS = 57.42 J.mol-1K-1. The experimentally measured 
entropy variation accounts for an electronic contribution, Rln5 = 13.4 J.mol-1K-1, and a 
vibrational contribution of 41.77 J.mol-1K-1. These values were corrected taking into account 
the active sites fraction associated with the spin transition which was accurately determined 
from complimentary Mössbauer spectroscopy measurements detailed below. Indeed on 
cooling to 78 K, a single quadrupole doublet with isomer shift δLS = 0.50(1) mm.s-1 was 
observed indicating 100% LS ions. The presence of a quadrupole splitting ∆EQ

LS = 0.24(1) 
mm.s-1, indicates a distortion of the octahedral as expected within a 1D chain [43]. At 318 K, 
the temperature for which the compound is expected to have undergone the spin transition, 
according to optical reflectivity measurements (figure 5.9), the spectrum shows a major 
quadrupole doublet (87%) attributed to HS FeII (δ = 0.99(1) mm.s-1 and ∆EQ = 2.49(2)mm.s-1) 
and a minor one (13%) corresponding to LS FeII (δ = 0.36 mm.s-1 and ∆EQ = 0.17(5)mm.s-1). 
Thus [Fe(hyetrz)3]I2∙H2O undergoes an incomplete ST on warming with 13% of non 
switching sites, which need to be taken into account for the enthalpy determination associated 
with the spin state change. 

 
Figure 5.11 

57Fe Mössbauer spectra for [Fe(hyetrz)3]I2∙H2O at 78 K (left) and 318 K (right). 

Pressure experiments were carried out on a home-made micromechanical device. The 
sample was deposited on a metal plate and covered with a scotch tape (figure 5.12).  

 

Figure 5.12 (Left): sample holder showing the SCO compound at room temperature on its 
sample holder covered with a scotch tape. (Right): Enlarged view of the sample evidencing 
colour change to pink at room temperature for various applied pressures (25 MPa, 50 MPa, 
100 MPa, 150 MPa, 200 MPa and 250 MPa). 
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 As shown in figure 5.12, the material is white at room temperature and ambient pressure 
which is characteristic of the HS state. The pressure was applied at selected spots on the 
sample, released and a photograph was taken again. As it can be seen, for a threshold value of 
the applied pressure of ca. 30 MPa, the SCO powder switches from white (HS) to pink (LS) 
and retain its colour (spin state) when pressure is released. On warming to 303 K, the powder 
switches back to white (HS state), making the sensor reusable. 

 From the DSC measurements, and taking into account 87% of spin switching 
determined by Mössbauer measurements, the entropy value calculated ΔS = 57.42 J.mol

-1
K

-1 
gives a degeneracies ratio state of the two spin state, g, such as lng = 6.906 and the enthalpy 
variation give a gap energy Δ0/kB=1978.6 K. For the volume variation (δV) during the spin 
transition (LS→HS, HS→LS), we used a typical value of volume change δV =100 A

3. 

 The thermal and pressure dependence of the HS molar fraction, nHS, at ambient pressure 
and temperature, computed for [Fe(hyetrz)3]I2∙H2O, i.e. for a complex displaying a hysteretic 
spin transition around room temperature is displayed in figure 5.13. The transition 
temperatures at atmospheric pressure are Tc

↑ = 292.5 K and Tc
↓ = 278.8 K, which are in 

excellent agreement with the ones detected by optical reflectivity (figure 5.9). The transition 
pressures at 300 K are Pc

↓ = 17.5 MPa and Pc
↑ = 8.2 MPa. 
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Figure 5.13 Thermal dependence at 1 bar (left) and pressure dependence at 300 K (right) of 
the HS molar fraction, nHS, as derived from the Ising like model. The parameters values are 
Δ0/kB = 1978.6 K, δV = 100 A3, ln(g) = 6.906 and Γ/kB = 360 K. 

A (P-T) phase diagram was generated to better understand the influence of temperature 
and pressure on the SCO behaviour. The calculated phase diagram in pressure-temperature 
coordinates using the same parameters as in figure 5.13, is displayed in figure 5.14. 
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Figure 5.14 Pressure-temperature phase diagram calculated for a SCO system switching 
around the room temperature region using the following parameters values: Δ0/kB = 1978.6 K, 
δV = 100 A3, ln(g) = 6.906 and Γ/kB = 360 K. 

 As can be seen from figure 5.14, the transition from the HS to the LS state can be 
achieved either by decreasing the temperature or by increasing the pressure. When the SCO 
compound located at point A, i.e. at given temperature T1 and pressure P1, is heated until it 
reaches point B of temperature T2≥ Tup at a constant pressure P1, a switch back to the HS 
state is observed. From B, if the temperature is decreased until it gets back to point A (T1, P1) 
then the compound remains in the HS state. By applying a pressure, the compound switches 
from HS to LS states at point C (T1, P2 > Pdown). If now the pressure is lowered back to P1 
(point A), the compound will remain in the LS state. In other words, inside the hysteresis 
width, the compound will keep the state of origin. When coming from the LS state it will 
remain in the LS state and when coming from the HS state it will retain the HS state as shown 
in figure 5.15. 

 
 
 
 
 
 

 
Figure 5.15 Representation of the switching mechanism induced by temperature and/or by 
pressure. 

5.3 Sensor concept 

 The use of SCO compounds as active components in thermal and pressure sensor 
devices was discussed in a few papers [9,11,44], but did not yet considered the attractive 
possibility to monitor at the same time both pressure and temperature due to the existence of 
multiple sets of T, P solutions that results from the p-T phase diagram. In this subsection is 
presented a novel concept for spin crossover-based sensors that allow the concomitant 
detection of both temperature and pressure using two different SCO materials that exhibit 

LS 

HS LS 

   

HS 
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gradual transitions. So, let’s to consider two SCO materials characterized by de following 
parameters: 

- compound 1: '
1 1 1, V, g andδ∆ Γ ; 

- and compound 2: '
2 2 2, V, g andδ∆ Γ . 

 The fictitious magnetizations, according with equation (5.4), of the two compounds can 
be written as: 

'
1 1 1 1

1

'
2 2 2 2

2

ln 2
tanh

2

ln 2
tanh

2

pc V T g

T

pc V T g

T

δ σ
σ

δ σ
σ

  ∆ + − − Γ
= −  

  


 ∆ + − − Γ
= − 

 

 (5.8)

where c is a constant equal to 0.0724, when the external applied pressure, p, is expressed in 
MPa and the volume variation of the molecule, δV, is expressed in Å3. 
Now, by solving the system of Equations (5.8), the expressions for T and p can be written as: 

( ) ( ) ( ) ( )
( )

' '

1 1 1 2 2 2

1 1

1 1 2 2

' 1 1 ' ' 1

1 1 1 1 1 2 2 1 1 1 2 2 2 1 1

1 1

1 1 2 2

2 2

2 tanh ln 2 tanh ln

2 * 2 tanh ln 2 tanh ln 2 2 * 2 tanh ln

* 2 tanh ln 2 tanh ln

T

g g

g g g
p

c V g g

σ σ

σ σ

σ σ σ σ σ σ

δ σ σ

− −

− − −

− −

Γ − ∆ − Γ + ∆
=

− − +

Γ − ∆ − − + − Γ − ∆ − Γ + ∆ −
=

− − +






  

(5.9) 

From the system of Equations (5.9) we can find simultaneously both values of temperature 
and pressure knowing the values of <σ1> and <σ2>. These values can be obtained by 
identifying the optical densities of each complex. The projected device must be initially 
calibrated using their optical densities. Compounds that could be adapted to this device should 
exhibit gradual transitions. Practically, our concept can be described as follows. A 
monochromatic light source (green light = 540 nm) is sent to both compounds. The 
“scattered” or reflected light by the compounds are directed on the detector (see Figure 5.16). 
The detector, calibrated previously, will assign the <σ1> and <σ2> that corresponds to the 
lights coming from both compounds. The temperature and pressure values are obtained by 
replacing the <σ1> and <σ2> in Equations (5.9). The challenge for chemists will be to 
synthesize SCO compounds with a good optical contrast and which will be thermally, 
pressure and time stable. In other words, to elaborate samples which keep the same color over 
time at a defined temperature and pressure set. This objective looks not too far to be achieved 
considering recent developments in the SCO field. 
 

 
Figure 5.16 Principle of measuring simultaneously temperature and pressure using two SCO 
compounds with optical reflectivity detection. 



Chapter 5. Pressure effect in molecular spin crossover compounds 
 

108 

 

5.4 Conclusions 

 In this chapter two experimental studies was presented. In the first study the thermo-and 
piezochromic properties of the [Fe(hyptrz)]A2∙H2O spin crossover 1D chain have been 
analyzed. The experimental study was completed by a theoretical investigation to predict the 
bistability region for this compound.  

 In the second part of this chapter was proved the feasibility of pressure detection using a 
molecular spin crossover based sensor/marker operating at ambient temperature. For the SCO 
compound [Fe(hyetrz)3]I2∙H2O, we obtained a threshold value of the contact pressure of about 
30 MPa to irreversibly induce the color change of the molecular material, due to the spin state 
switching form HS to LS state. Noticeably, the possibility to switch back the color using 
another stimulus (temperature) was demonstrated making this sensor reusable. As in a 
previously case, a theoretical investigation in the framework of the Ising-like model has been 
presented. These results open important perspectives for molecular materials in pressure 
sensing applications, making possible their insertion in piezo- and thermo-chromic paints that 
will allow the visual detection of mechanical collisions, a very important issue in the 
aeronautic and automotive industries. 

 The chapter ends with a proposal of concept for spin crossover-based sensors that allow 
the concomitant detection of both temperature and pressure using two different SCO 
materials. 
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General Conclusions 

 The continuous development of new equipment and machinery that require more 

advanced sensors with improved technical characteristics constitutes the motivation behind 

the results presented in this thesis. A special class of new sensors is based on spin-crossover 

materials. The main advantages of these materials, such as the ability to be controlled at the 

molecular level, color changing during the transition between the two states, hysteresis, and 

high sensitivity to changes in external perturbing factors, opened up the possibility for new 

applications: temperature and/or pressure sensors, chemical sensors, memory, displays, fast 

switching devices. Throughout this thesis both theoretical and experimental studies on the 

possibility of using these materials in the manufacture of temperature sensors and pressure 

were presented. Using a Ising-like model, we begin with a theoretical investigation of the role 

of cooperativity in a SCO system, the interactions of surface molecules with their 

environment, architecture and size effects. We continued the theoretical study using a Atom 

Phonon coupling model and showed the efficiency of the parabolic method in solving for the 

system’s Hamiltonian. We also performed experimental studies to point out the thermal and 

piezo-chromic properties of the SCO compounds [Fe(hyptrz)]A2∙H2O and 

[Fe(hyetrz)3]I2∙H2O. 

 The theoretical studies on the role of a system’s cooperativity were carried out using a 

Ising-like model in combination with a Monte Carlo Entropic Sampling method used to 

generate all system states. We have shown that behind a multi step transition there are three 

types of interactions: the short-range interactions, long-range interactions and interactions of 

surface molecules with their environment. These results are important for the construction of 

a SCO materials based device. It is also very important to take into account the interactions 

that can occur between the molecules on the surface with their environment. For example, in 

the manufacturing process of a SCO based sensor it is important to take into account the 

interactions that occur between SCO and the support material used to deposit the SCO to, and 

interactions between SCO and the polymer material used to enclose the SCO material. 

Interactions between surface molecules and their environment are more important, especially 

when the system is set up so that the number of molecules at the surface is greater than that of 

the entire system. We have shown that a 1D system, where the edge only has two molecules, 

requires a large value of edge interactions in order to play a significant role in SCO system 

behavior. 2D and 3D systems, where the number of surface molecules is much higher, the 

SCO system behavior is influenced even for lower values of edge interactions. The influence 

of edge effect is all the greater as the ratio of molecules on the surface and within the system 

is higher. These studies were done considering the surface molecules as active molecules. 

 Important results were obtained from the analysis of the role of system architecture. 

Considering the same number of molecules we showed that a quadratic system is more 

cooperative than a rectangular ladder system which in turn is more cooperative than a chain-

type system. This is evidenced by the width of the hysteresis loop of each system. It was also 

revealed that the edge effect shift the transition temperatures to lower values. 

 Using the Atom Phonon coupling model the results were compared using three different 

methods of solving the Hamiltonian: mean field approximation, dynamic matrix and the 

parabolic approximation. Thus we showed that the parabolic approximation method is 

superior to the approximation of the mean field and that the results obtained by this method 

are very close to reality. This is because this method uses exact calculation. 

The parabolic method leads to the same thermal behavior of the SCO system as that obtained 

with the dynamic matrix method, especially for small sized system. However, for large 
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systems, the entropy contribution plays an important role and a close correspondence between 

results given by these two methods is obtained only for high values of the degeneracy ratio. 

For example, for N=8, this discrepancy disappears for g higher than 1000, that is when the 

variation of the entropy at the transition temperature is higher than Rln(g) = 57.9 Joule K
-1

 

mol
-1

. This entropy variation value is common in SCO systems.  

 Experimental studies were conducted on two SCO compounds: [Fe(hyptrz)]A2∙H2O and 

[Fe(hyetrz)3]I2∙H2O respectively, indicating the thermal and piezo-chromic character of the 

systems. In the thermal analysis of the external pressure behavior of the first compound, a gas 

pressure cell was used. This type of cell has the advantage to maintain the hydrostatic nature 

over the entire range of temperature. Thus it was shown that, by applying an external 

pressure, the transition temperatures are translated to higher values and the width of the 

hysteresis loop decreases and eventually disappears after which the transition occurs without 

hysteresis. The second compound was characterized using several techniques: optical 

characterization, DSC, Mössbauer spectroscopy and a home-made micromechanical device. 

We proved the feasibility of pressure detection using a molecular spin crossover based 

sensor/marker operating at ambient temperature. For the SCO compound [Fe(hyetrz)3]I2∙H2O, 

we obtained a threshold value of the contact pressure of about 30 MPa to irreversibly induce 

the color change of the molecular material, due to the spin state switching form HS to LS 

state. Moreover, the possibility of switching back the color using another stimulus 

(temperature) was demonstrated, making this sensor reusable. As in the previous case, a 

theoretical investigation in the framework of the Ising-like model has been presented. These 

results open important perspectives for molecular materials in pressure sensing applications, 

suggesting the possibility of their insertion in piezo- and thermo-chromic paints that will 

allow the visual detection of mechanical collisions, a very important issue in the aeronautic 

and automotive industries. 

 Taking into account the above mentioned results we proposed a new type of sensor with 

optical detection that would allow the concomitant detection of both temperature and 

pressure. This new type of sensor is based on two SCO compounds that exhibit gradual 

transitions. Considering recent developments in the SCO field this objective could be 

achievable in the near future. 



 

113 

 

List of publications 
 

1. Catalin Maricel Jureschi, Ionela Rusu, Epiphane Codjovi, Jorge Linares, Yann Garcia, 

Aurelian Rotaru, Thermo- and piezochromic properties of [Fe(hyptrz)]A2·H2O spin 

crossover 1D coordination polymer: Towards spin crossover based temperature and pressure 

sensors, Physica B: Condensed Matter, 449 (2014) 47-51. 

2. Daniel Chiruta, Catalin Maricel Jureschi, Jorge Linares, Yann Garcia, Aurelian Rotaru, 

Lattice architecture effect on the cooperativity of spin transition coordination polymers, 

Journal of Applied Physics, 115 (2014). 

3. Daniel Chiruta, Catalin Maricel Jureschi, Jorge Linares, Adrian Graur, Mihai Dimian, 

Aurelian Rotaru, Analysis of Architecture Effect on Hysteretic Behavior of 3-D Spin 

Crossover Nanostructures, Magnetics, IEEE Transactions on, 50 (2014) 1-4. 

4. Catalin Maricel Jureschi, Jorge Linares, Aurelian Rotaru, Marie Helene Ritti, Michel 

Parlier, Marinela M. Dîrtu, Mariusz Wolff, Yann Garcia, Pressure sensor via optical 

detection based on a 1D spin transition coordination polymer, Sensors (Basel, Switzerland), 

15 (2015) 2388-2398. 

5. Daniel Chiruta, Catalin Maricel Jureschi, Jorge Linares, Jamil Nasser, Aurelian Rotaru, 

Analysis of spin crossover nanochains using parabolic approximation in the framework of 

atom–phonon coupling model, Physica B: Condensed Matter, 476 (2015) 61-70. 

6. Daniel Chiruta, Catalin Maricel Jureschi, Jorge Linares, Pierre Richard Dahoo, Yann 

Garcia, Aurelian Rotaru, On the origin of multi-step spin transition behaviour in 1D 

nanoparticles, The European Physical Journal B, 88 (2015) 1-5. 

7. Catalin Maricel Jureschi, Benjamin-Louis Pottier, Jorge Linares, Pierre Richard Dahoo, 

Yasser Alayli, Aurelian Rotaru, Simulation of multi-steps thermal transition in 2D spin-

crossover nanoparticles, Physica B: Condensed Matter, 486 (2016) 160-163. 

8. Jorge Linares, Catalin Maricel Jureschi, Ayoub Boulmaali, Kamel Boukheddaden, 

Matrix and size effects on the appearance of the thermal hysteresis in 2D spin crossover 

nanoparticles, Physica B: Condensed Matter, 486 (2016) 164-168. 

9. Damir A. Safin, Koen Robeyns, Maria G. Babashkina, Yaroslav Filinchuk, Aurelian 

Rotaru, Catalin Maricel Jureschi, Mariusz P. Mitoraj, James Hooper, Mateusz Brela, Yann 

Garcia, Polymorphism driven optical properties of an anil dye, Crystengcomm, 18 (2016) 

7249-7259. 

10. Catalin Maricel Jureschi, Jorge Linares, Ayoub Boulmaali, Pierre Dahoo, Aurelian 

Rotaru, Yann Garcia, Pressure and Temperature Sensors Using Two Spin Crossover 

Materials, Sensors, 16 (2016) 187. 

11. Catalin Maricel Jureschi, Jorge Linares, Aurelian Rotaru, Yann Garcia, Multi-Step in 3D 

Spin Crossover Nanoparticles Simulated by an Ising Model Using Entropic Sampling Monte 

Carlo Technique, Magnetochemistry, 2 (2016) 13. 

12. Jorge Linares, Catalin Maricel Jureschi, Kamel Boukheddaden, Surface Effects Leading 

to Unusual Size Dependence of the Thermal Hysteresis Behavior in Spin-Crossover 

Nanoparticles, Magnetochemistry, 2 (2016) 24. 

 



List of publications 

 

114 

 

13. Catalin Maricel Jureschi, Jorge Linares, Pierre-Richard Dahoo, Yasser Alayli, Monte 

Carlo entropic sampling applied to Ising-like model for 2D and 3D systems, Journal of 

Physics: Conference Series, 738 (2016) 012051. 

14. Jorge Linares, Daniel Chiruta, Catalin Maricel Jureschi, Yasser Alayli, C. O. Turcu, 

Pierre-Richard Dahoo, Simulations of Edge Effect in 1D Spin Crossover Compounds by Atom-

Phonon Coupling Model, Journal of Physics: Conference Series, 738 (2016) 012052. 

15. Salim Guerroudj, Rafael Caballero, Francisco De Zela, Catalin Maricel Jureschi, Jorge 

Linares and Kamel Boukheddaden - Monte Carlo - Metropolis Investigations of Shape and 

Matrix Effects in 2D and 3D Spin-Crossover Nanoparticles, Journal of Physics Series 

Conference, 738 (2016) 012068. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

115 

 

List of conferences 
 

1. Catalin Maricel Jureschi, Adrian Graur, Gelu Rotaru, Jorge Linares, Yann Garcia, 

Aurelian Rotaru, - 6th International Workshop on Multi-Rate Processes and Hysteresis 

(MURPHYS 2012), 21-24 May 2012, Suceava, Romania  

2. Catalin Maricel Jureschi, Epiphane Codjovi, Jorge Linares, Yann Garcia, Aurelian 

Rotaru - 2nd International Conference on Advanced Complex Inorganic Nanomaterials – 

ACIN 2013, 15-19 July 2013, Namur 

3. Daniel Chiruta, Catalin Maricel Jureschi, Jorge Linares, Yann Garcia, Aurelian Rotaru - 

DdR MCM2-Magnetism and molecular switches, 10-12.12.2013, Dourdan 

4. Daniel Chiruta, Catalin Maricel Jureschi, Jorge Linares, Adrian Graur, Mihai Dimian, 

Aurelian Rotaru - IEEE International Magnetics Conference (INTERMAG 2014), 4-8 May 

2014, Dresden, Germany 

5. Ionel Rusu, Catalin Maricel Jureschi, Corneliu Octavian Turcu, Aurelian Rotaru - 10th 

International Conference on Physics of Advanced Materials – ICPAM 2014, 22-28 September 

2014, Iasi, Romania 

6. Daniel Chiruta, Catalin Maricel Jureschi, Jorge Linares, Pierre-Richard Dahoo, Yann 

Garcia, Aurelian Rotaru - 10th Internation Symposium on Hysteresis Modeling and 

Micromagnetics (HMM), 18/-20 May 2015 Iasi, Romania 

 


